/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 18 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (27) QDP (28) TransformationProof [EQUIVALENT, 0 ms] (29) QDP (30) TransformationProof [EQUIVALENT, 0 ms] (31) QDP (32) QReductionProof [EQUIVALENT, 0 ms] (33) QDP (34) NonTerminationLoopProof [COMPLETE, 0 ms] (35) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> X if(false, X, Y) -> Y zero(0) -> true zero(s(X)) -> false p(s(X)) -> X Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> X if(false, X, Y) -> Y zero(0) -> true zero(s(X)) -> false p(s(X)) -> X The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> IF(zero(X), s(0), prod(X, fact(p(X)))) FACT(X) -> ZERO(X) FACT(X) -> PROD(X, fact(p(X))) FACT(X) -> FACT(p(X)) FACT(X) -> P(X) ADD(s(X), Y) -> ADD(X, Y) PROD(s(X), Y) -> ADD(Y, prod(X, Y)) PROD(s(X), Y) -> PROD(X, Y) The TRS R consists of the following rules: fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> X if(false, X, Y) -> Y zero(0) -> true zero(s(X)) -> false p(s(X)) -> X The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> X if(false, X, Y) -> Y zero(0) -> true zero(s(X)) -> false p(s(X)) -> X The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) R is empty. The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(s(X), Y) -> ADD(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(s(X), Y) -> PROD(X, Y) The TRS R consists of the following rules: fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> X if(false, X, Y) -> Y zero(0) -> true zero(s(X)) -> false p(s(X)) -> X The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(s(X), Y) -> PROD(X, Y) R is empty. The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(s(X), Y) -> PROD(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PROD(s(X), Y) -> PROD(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) The TRS R consists of the following rules: fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) prod(0, X) -> 0 prod(s(X), Y) -> add(Y, prod(X, Y)) if(true, X, Y) -> X if(false, X, Y) -> Y zero(0) -> true zero(s(X)) -> false p(s(X)) -> X The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) The TRS R consists of the following rules: p(s(X)) -> X The set Q consists of the following terms: fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fact(x0) add(0, x0) add(s(x0), x1) prod(0, x0) prod(s(x0), x1) if(true, x0, x1) if(false, x0, x1) zero(0) zero(s(x0)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) The TRS R consists of the following rules: p(s(X)) -> X The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: p(s(X)) -> X Used ordering: POLO with Polynomial interpretation [POLO]: POL(FACT(x_1)) = x_1 POL(p(x_1)) = x_1 POL(s(x_1)) = x_1 ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(X) -> FACT(p(X)) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule FACT(X) -> FACT(p(X)) we obtained the following new rules [LPAR04]: (FACT(p(z0)) -> FACT(p(p(z0))),FACT(p(z0)) -> FACT(p(p(z0)))) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(p(z0)) -> FACT(p(p(z0))) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule FACT(p(z0)) -> FACT(p(p(z0))) we obtained the following new rules [LPAR04]: (FACT(p(p(z0))) -> FACT(p(p(p(z0)))),FACT(p(p(z0))) -> FACT(p(p(p(z0))))) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(p(p(z0))) -> FACT(p(p(p(z0)))) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QReductionProof (EQUIVALENT) We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN]. p(s(x0)) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: FACT(p(p(z0))) -> FACT(p(p(p(z0)))) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (34) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = FACT(p(p(z0))) evaluates to t =FACT(p(p(p(z0)))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [z0 / p(z0)] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from FACT(p(p(z0))) to FACT(p(p(p(z0)))). ---------------------------------------- (35) NO