/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPSizeChangeProof [EQUIVALENT, 0 ms] (41) YES (42) QDP (43) UsableRulesProof [EQUIVALENT, 0 ms] (44) QDP (45) QReductionProof [EQUIVALENT, 0 ms] (46) QDP (47) NonInfProof [EQUIVALENT, 60 ms] (48) QDP (49) PisEmptyProof [EQUIVALENT, 0 ms] (50) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) LEN(cons(x, xs)) -> LEN(xs) SUM(x, s(y)) -> SUM(x, y) LE(s(x), s(y)) -> LE(x, y) TAKE(s(x), cons(y, ys)) -> TAKE(x, ys) ADDLIST(x, y) -> IF(le(0, min(len(x), len(y))), 0, x, y, nil) ADDLIST(x, y) -> LE(0, min(len(x), len(y))) ADDLIST(x, y) -> MIN(len(x), len(y)) ADDLIST(x, y) -> LEN(x) ADDLIST(x, y) -> LEN(y) IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) IF(true, c, xs, ys, z) -> LE(s(c), min(len(xs), len(ys))) IF(true, c, xs, ys, z) -> MIN(len(xs), len(ys)) IF(true, c, xs, ys, z) -> LEN(xs) IF(true, c, xs, ys, z) -> LEN(ys) IF(true, c, xs, ys, z) -> SUM(take(c, xs), take(c, ys)) IF(true, c, xs, ys, z) -> TAKE(c, xs) IF(true, c, xs, ys, z) -> TAKE(c, ys) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 12 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(s(x), cons(y, ys)) -> TAKE(x, ys) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(s(x), cons(y, ys)) -> TAKE(x, ys) R is empty. The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(s(x), cons(y, ys)) -> TAKE(x, ys) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TAKE(s(x), cons(y, ys)) -> TAKE(x, ys) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(x, s(y)) -> SUM(x, y) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(x, s(y)) -> SUM(x, y) R is empty. The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(x, s(y)) -> SUM(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SUM(x, s(y)) -> SUM(x, y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(cons(x, xs)) -> LEN(xs) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(cons(x, xs)) -> LEN(xs) R is empty. The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(cons(x, xs)) -> LEN(xs) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LEN(cons(x, xs)) -> LEN(xs) The graph contains the following edges 1 > 1 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) R is empty. The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MIN(s(x), s(y)) -> MIN(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (41) YES ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The TRS R consists of the following rules: len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. addList(x0, x1) if(false, x0, x1, x2, x3) if(true, x0, x1, x2, x3) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The TRS R consists of the following rules: len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) the following chains were created: *We consider the chain IF(true, x0, x1, x2, x3) -> IF(le(s(x0), min(len(x1), len(x2))), s(x0), x1, x2, cons(sum(take(x0, x1), take(x0, x2)), x3)), IF(true, x4, x5, x6, x7) -> IF(le(s(x4), min(len(x5), len(x6))), s(x4), x5, x6, cons(sum(take(x4, x5), take(x4, x6)), x7)) which results in the following constraint: (1) (IF(le(s(x0), min(len(x1), len(x2))), s(x0), x1, x2, cons(sum(take(x0, x1), take(x0, x2)), x3))=IF(true, x4, x5, x6, x7) ==> IF(true, x4, x5, x6, x7)_>=_IF(le(s(x4), min(len(x5), len(x6))), s(x4), x5, x6, cons(sum(take(x4, x5), take(x4, x6)), x7))) We simplified constraint (1) using rules (I), (II), (III), (IV), (VII) which results in the following new constraint: (2) (s(x0)=x8 & min(x10, x11)=x9 & le(x8, x9)=true & cons(sum(take(x0, x1), take(x0, x2)), x3)=x7 ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x8, x9)=true which results in the following new constraints: (3) (le(x14, x13)=true & s(x0)=s(x14) & min(x10, x11)=s(x13) & cons(sum(take(x0, x1), take(x0, x2)), x3)=x7 & (\/x15,x16,x17,x18,x19,x20,x21:le(x14, x13)=true & s(x15)=x14 & min(x16, x17)=x13 & cons(sum(take(x15, x18), take(x15, x19)), x20)=x21 ==> IF(true, s(x15), x18, x19, x21)_>=_IF(le(s(s(x15)), min(len(x18), len(x19))), s(s(x15)), x18, x19, cons(sum(take(s(x15), x18), take(s(x15), x19)), x21))) ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) (4) (true=true & s(x0)=0 & min(x10, x11)=x22 & cons(sum(take(x0, x1), take(x0, x2)), x3)=x7 ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (le(x14, x13)=true & x0=x14 & min(x10, x11)=s(x13) & cons(sum(take(x0, x1), take(x0, x2)), x3)=x7 & (\/x15,x16,x17,x18,x19,x20,x21:le(x14, x13)=true & s(x15)=x14 & min(x16, x17)=x13 & cons(sum(take(x15, x18), take(x15, x19)), x20)=x21 ==> IF(true, s(x15), x18, x19, x21)_>=_IF(le(s(s(x15)), min(len(x18), len(x19))), s(s(x15)), x18, x19, cons(sum(take(s(x15), x18), take(s(x15), x19)), x21))) ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) We solved constraint (4) using rules (I), (II).We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on min(x10, x11)=s(x13) which results in the following new constraint: (6) (min(x26, x25)=s(x13) & le(x14, x13)=true & x0=x14 & cons(sum(take(x0, x1), take(x0, x2)), x3)=x7 & (\/x15,x16,x17,x18,x19,x20,x21:le(x14, x13)=true & s(x15)=x14 & min(x16, x17)=x13 & cons(sum(take(x15, x18), take(x15, x19)), x20)=x21 ==> IF(true, s(x15), x18, x19, x21)_>=_IF(le(s(s(x15)), min(len(x18), len(x19))), s(s(x15)), x18, x19, cons(sum(take(s(x15), x18), take(s(x15), x19)), x21))) & (\/x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,x40:min(x26, x25)=s(x27) & le(x28, x27)=true & x29=x28 & cons(sum(take(x29, x30), take(x29, x31)), x32)=x33 & (\/x34,x35,x36,x37,x38,x39,x40:le(x28, x27)=true & s(x34)=x28 & min(x35, x36)=x27 & cons(sum(take(x34, x37), take(x34, x38)), x39)=x40 ==> IF(true, s(x34), x37, x38, x40)_>=_IF(le(s(s(x34)), min(len(x37), len(x38))), s(s(x34)), x37, x38, cons(sum(take(s(x34), x37), take(s(x34), x38)), x40))) ==> IF(true, s(x29), x30, x31, x33)_>=_IF(le(s(s(x29)), min(len(x30), len(x31))), s(s(x29)), x30, x31, cons(sum(take(s(x29), x30), take(s(x29), x31)), x33))) ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) We simplified constraint (6) using rule (VI) where we applied the induction hypothesis (\/x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,x40:min(x26, x25)=s(x27) & le(x28, x27)=true & x29=x28 & cons(sum(take(x29, x30), take(x29, x31)), x32)=x33 & (\/x34,x35,x36,x37,x38,x39,x40:le(x28, x27)=true & s(x34)=x28 & min(x35, x36)=x27 & cons(sum(take(x34, x37), take(x34, x38)), x39)=x40 ==> IF(true, s(x34), x37, x38, x40)_>=_IF(le(s(s(x34)), min(len(x37), len(x38))), s(s(x34)), x37, x38, cons(sum(take(s(x34), x37), take(s(x34), x38)), x40))) ==> IF(true, s(x29), x30, x31, x33)_>=_IF(le(s(s(x29)), min(len(x30), len(x31))), s(s(x29)), x30, x31, cons(sum(take(s(x29), x30), take(s(x29), x31)), x33))) with sigma = [x27 / x13, x28 / x14, x29 / x0, x30 / x1, x31 / x2, x32 / x3, x33 / x7, x34 / x15, x37 / x18, x38 / x19, x40 / x21, x35 / x16, x36 / x17, x39 / x20] which results in the following new constraint: (7) (IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7)) ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) To summarize, we get the following constraints P__>=_ for the following pairs. *IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) *(IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7)) ==> IF(true, s(x0), x1, x2, x7)_>=_IF(le(s(s(x0)), min(len(x1), len(x2))), s(s(x0)), x1, x2, cons(sum(take(s(x0), x1), take(s(x0), x2)), x7))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 1 POL(IF(x_1, x_2, x_3, x_4, x_5)) = -1 - x_1 - x_2 - x_3 - x_4 - x_5 POL(c) = -1 POL(cons(x_1, x_2)) = 1 + x_2 POL(false) = 1 POL(le(x_1, x_2)) = 1 POL(len(x_1)) = 1 + x_1 POL(min(x_1, x_2)) = 1 POL(nil) = 1 POL(s(x_1)) = 1 + x_1 POL(sum(x_1, x_2)) = 1 POL(take(x_1, x_2)) = 1 + x_1 + x_2 POL(true) = 1 The following pairs are in P_>: IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The following pairs are in P_bound: IF(true, c, xs, ys, z) -> IF(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The following rules are usable: false -> le(s(x), 0) le(x, y) -> le(s(x), s(y)) true -> le(0, x) ---------------------------------------- (48) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true The set Q consists of the following terms: min(0, x0) min(s(x0), 0) min(s(x0), s(x1)) len(nil) len(cons(x0, x1)) sum(x0, 0) sum(x0, s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) take(0, cons(x0, x1)) take(s(x0), cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (50) YES