/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 8 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) TransformationProof [EQUIVALENT, 0 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) QReductionProof [EQUIVALENT, 0 ms] (52) QDP (53) TransformationProof [EQUIVALENT, 0 ms] (54) QDP (55) TransformationProof [EQUIVALENT, 0 ms] (56) QDP (57) TransformationProof [EQUIVALENT, 0 ms] (58) QDP (59) UsableRulesProof [EQUIVALENT, 0 ms] (60) QDP (61) QReductionProof [EQUIVALENT, 0 ms] (62) QDP (63) TransformationProof [EQUIVALENT, 0 ms] (64) QDP (65) UsableRulesProof [EQUIVALENT, 0 ms] (66) QDP (67) QReductionProof [EQUIVALENT, 0 ms] (68) QDP (69) TransformationProof [EQUIVALENT, 0 ms] (70) QDP (71) UsableRulesProof [EQUIVALENT, 0 ms] (72) QDP (73) QReductionProof [EQUIVALENT, 0 ms] (74) QDP (75) TransformationProof [EQUIVALENT, 0 ms] (76) QDP (77) UsableRulesProof [EQUIVALENT, 0 ms] (78) QDP (79) TransformationProof [EQUIVALENT, 0 ms] (80) QDP (81) QDPOrderProof [EQUIVALENT, 0 ms] (82) QDP (83) DependencyGraphProof [EQUIVALENT, 0 ms] (84) QDP (85) QDPOrderProof [EQUIVALENT, 17 ms] (86) QDP (87) DependencyGraphProof [EQUIVALENT, 0 ms] (88) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(y, ys), x) -> APPEND(ys, x) P(s(s(x))) -> P(s(x)) INC(s(x)) -> INC(x) ADDLISTS(xs, ys, zs) -> IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) ADDLISTS(xs, ys, zs) -> ISEMPTY(xs) ADDLISTS(xs, ys, zs) -> ISEMPTY(ys) ADDLISTS(xs, ys, zs) -> ISZERO(head(xs)) ADDLISTS(xs, ys, zs) -> HEAD(xs) ADDLISTS(xs, ys, zs) -> TAIL(xs) ADDLISTS(xs, ys, zs) -> TAIL(ys) ADDLISTS(xs, ys, zs) -> P(head(xs)) ADDLISTS(xs, ys, zs) -> INC(head(ys)) ADDLISTS(xs, ys, zs) -> HEAD(ys) ADDLISTS(xs, ys, zs) -> APPEND(zs, head(ys)) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLIST(xs, ys) -> ADDLISTS(xs, ys, nil) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 11 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: INC(s(x)) -> INC(x) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: INC(s(x)) -> INC(x) R is empty. The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: INC(s(x)) -> INC(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *INC(s(x)) -> INC(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(x))) -> P(s(x)) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(x))) -> P(s(x)) R is empty. The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(x))) -> P(s(x)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *P(s(s(x))) -> P(s(x)) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(y, ys), x) -> APPEND(ys, x) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(y, ys), x) -> APPEND(ys, x) R is empty. The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(y, ys), x) -> APPEND(ys, x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPEND(cons(y, ys), x) -> APPEND(ys, x) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(xs, ys, zs) -> IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) addLists(xs, ys, zs) -> if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) if(true, true, b, xs, ys, xs2, ys2, zs, zs2) -> zs if(true, false, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, true, b, xs, ys, xs2, ys2, zs, zs2) -> differentLengthError if(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs2, ys2, zs) if(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> addLists(xs, ys, zs2) addList(xs, ys) -> addLists(xs, ys, nil) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(xs, ys, zs) -> IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. addLists(x0, x1, x2) if(true, true, x0, x1, x2, x3, x4, x5, x6) if(true, false, x0, x1, x2, x3, x4, x5, x6) if(false, true, x0, x1, x2, x3, x4, x5, x6) if(false, false, false, x0, x1, x2, x3, x4, x5) if(false, false, true, x0, x1, x2, x3, x4, x5) addList(x0, x1) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(xs, ys, zs) -> IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ADDLISTS(xs, ys, zs) -> IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys))) at position [0] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))),ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))) (ADDLISTS(nil, y1, y2) -> IF(true, isEmpty(y1), isZero(head(nil)), tail(nil), tail(y1), cons(p(head(nil)), tail(nil)), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))),ADDLISTS(nil, y1, y2) -> IF(true, isEmpty(y1), isZero(head(nil)), tail(nil), tail(y1), cons(p(head(nil)), tail(nil)), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) ADDLISTS(nil, y1, y2) -> IF(true, isEmpty(y1), isZero(head(nil)), tail(nil), tail(y1), cons(p(head(nil)), tail(nil)), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) at position [2,0] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))),ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) at position [3] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))),ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) at position [5,0,0] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))),ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) at position [5,1] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))),ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ADDLISTS(cons(x0, x1), y1, y2) -> IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) at position [1] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))),ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))) (ADDLISTS(cons(y0, y1), nil, y3) -> IF(false, true, isZero(y0), y1, tail(nil), cons(p(y0), y1), cons(inc(head(nil)), tail(nil)), y3, append(y3, head(nil))),ADDLISTS(cons(y0, y1), nil, y3) -> IF(false, true, isZero(y0), y1, tail(nil), cons(p(y0), y1), cons(inc(head(nil)), tail(nil)), y3, append(y3, head(nil)))) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) ADDLISTS(cons(y0, y1), nil, y3) -> IF(false, true, isZero(y0), y1, tail(nil), cons(p(y0), y1), cons(inc(head(nil)), tail(nil)), y3, append(y3, head(nil))) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true head(cons(x, xs)) -> x isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 head(cons(x, xs)) -> x inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isEmpty(cons(x0, x1)) isEmpty(nil) isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(cons(x0, x1)) isEmpty(nil) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 head(cons(x, xs)) -> x inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) at position [4] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))),ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 head(cons(x, xs)) -> x inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) at position [6,0,0] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))),ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 head(cons(x, xs)) -> x inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) at position [6,1] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1)))),ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1))))) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1)))) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false tail(cons(x, xs)) -> xs p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 head(cons(x, xs)) -> x inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1)))) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) head(cons(x, xs)) -> x append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) tail(cons(x0, x1)) tail(nil) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. tail(cons(x0, x1)) tail(nil) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1)))) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) head(cons(x, xs)) -> x append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1)))) at position [8,1] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0)),ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0))) ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0)) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) head(cons(x, xs)) -> x append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0)) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) head(cons(x0, x1)) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. head(cons(x0, x1)) ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0)) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ADDLISTS(cons(y0, y1), cons(x0, x1), y3) -> IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0)) at position [2] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2)),ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2))) (ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)),ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))) ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) The set Q consists of the following terms: isZero(0) isZero(s(x0)) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (72) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) The TRS R consists of the following rules: p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(0) -> 0 The set Q consists of the following terms: isZero(0) isZero(s(x0)) append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (73) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isZero(0) isZero(s(x0)) ---------------------------------------- (74) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) The TRS R consists of the following rules: p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(0) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (75) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2)) at position [5,0] we obtained the following new rules [LPAR04]: (ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2)),ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2))) ---------------------------------------- (76) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2)) The TRS R consists of the following rules: p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(0) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (77) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (78) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2)) The TRS R consists of the following rules: inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (79) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs, ys, zs2) we obtained the following new rules [LPAR04]: (IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) -> ADDLISTS(z0, z2, y_1),IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) -> ADDLISTS(z0, z2, y_1)) ---------------------------------------- (80) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2)) IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) -> ADDLISTS(z0, z2, y_1) The TRS R consists of the following rules: inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (81) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) -> ADDLISTS(z0, z2, y_1) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. IF(x1, x2, x3, x4, x5, x6, x7, x8, x9) = x7 ADDLISTS(x1, x2, x3) = x2 cons(x1, x2) = cons(x2) Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (82) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) ADDLISTS(cons(0, y1), cons(y2, y3), y4) -> IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2)) The TRS R consists of the following rules: inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (83) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (84) Obligation: Q DP problem: The TRS P consists of the following rules: ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) The TRS R consists of the following rules: inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (85) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) -> IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_9(x_1, ..., x_9) ) = 2x_1 + 2x_2 + 2x_3 + 2x_6 + 2x_8 POL( cons_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 1} POL( p_1(x_1) ) = max{0, x_1 - 2} POL( s_1(x_1) ) = 2x_1 + 1 POL( 0 ) = 0 POL( inc_1(x_1) ) = 0 POL( append_2(x_1, x_2) ) = 0 POL( nil ) = 0 POL( ADDLISTS_3(x_1, ..., x_3) ) = 2x_1 + 2x_3 POL( false ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) -> ADDLISTS(xs2, ys2, zs) The TRS R consists of the following rules: inc(s(x)) -> s(inc(x)) inc(0) -> s(0) append(nil, x) -> cons(x, nil) append(cons(y, ys), x) -> cons(y, append(ys, x)) p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) p(s(s(x0))) p(s(0)) p(0) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (88) TRUE