/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 17 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) MRRProof [EQUIVALENT, 0 ms] (20) QDP (21) DependencyGraphProof [EQUIVALENT, 0 ms] (22) TRUE (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) MNOCProof [EQUIVALENT, 0 ms] (32) QDP (33) NonLoopProof [COMPLETE, 167 ms] (34) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The TRS R 2 is f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) The signature Sigma is {f_2} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, xs) -> F(isList(xs), append(cons(a, nil), xs)) F(true, xs) -> ISLIST(xs) F(true, xs) -> APPEND(cons(a, nil), xs) ISLIST(cons(x, xs)) -> ISLIST(xs) APPEND(xs, ys) -> APPENDAKK(reverse(xs), ys) APPEND(xs, ys) -> REVERSE(xs) APPENDAKK(cons(x, xs), ys) -> APPENDAKK(xs, cons(x, ys)) REVERSE(cons(x, xs)) -> APPEND(reverse(xs), cons(x, nil)) REVERSE(cons(x, xs)) -> REVERSE(xs) The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APPENDAKK(cons(x, xs), ys) -> APPENDAKK(xs, cons(x, ys)) The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APPENDAKK(cons(x, xs), ys) -> APPENDAKK(xs, cons(x, ys)) R is empty. The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APPENDAKK(cons(x, xs), ys) -> APPENDAKK(xs, cons(x, ys)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPENDAKK(cons(x, xs), ys) -> APPENDAKK(xs, cons(x, ys)) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(xs, ys) -> REVERSE(xs) REVERSE(cons(x, xs)) -> APPEND(reverse(xs), cons(x, nil)) REVERSE(cons(x, xs)) -> REVERSE(xs) The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(xs, ys) -> REVERSE(xs) REVERSE(cons(x, xs)) -> APPEND(reverse(xs), cons(x, nil)) REVERSE(cons(x, xs)) -> REVERSE(xs) The TRS R consists of the following rules: reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0) isList(nil) isList(cons(x0, x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(xs, ys) -> REVERSE(xs) REVERSE(cons(x, xs)) -> APPEND(reverse(xs), cons(x, nil)) REVERSE(cons(x, xs)) -> REVERSE(xs) The TRS R consists of the following rules: reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) The set Q consists of the following terms: append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: REVERSE(cons(x, xs)) -> APPEND(reverse(xs), cons(x, nil)) REVERSE(cons(x, xs)) -> REVERSE(xs) Used ordering: Polynomial interpretation [POLO]: POL(APPEND(x_1, x_2)) = 2 + 2*x_1 + x_2 POL(REVERSE(x_1)) = 2 + 2*x_1 POL(append(x_1, x_2)) = x_1 + x_2 POL(appendAkk(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = 2 + x_1 + x_2 POL(nil) = 0 POL(reverse(x_1)) = x_1 ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(xs, ys) -> REVERSE(xs) The TRS R consists of the following rules: reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) The set Q consists of the following terms: append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (22) TRUE ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: ISLIST(cons(x, xs)) -> ISLIST(xs) The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: ISLIST(cons(x, xs)) -> ISLIST(xs) R is empty. The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: ISLIST(cons(x, xs)) -> ISLIST(xs) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ISLIST(cons(x, xs)) -> ISLIST(xs) The graph contains the following edges 1 > 1 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, xs) -> F(isList(xs), append(cons(a, nil), xs)) The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) The set Q consists of the following terms: f(true, x0) isList(nil) isList(cons(x0, x1)) append(x0, x1) appendAkk(nil, x0) appendAkk(cons(x0, x1), x2) reverse(nil) reverse(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, xs) -> F(isList(xs), append(cons(a, nil), xs)) The TRS R consists of the following rules: f(true, xs) -> f(isList(xs), append(cons(a, nil), xs)) isList(nil) -> true isList(cons(x, xs)) -> isList(xs) append(xs, ys) -> appendAkk(reverse(xs), ys) appendAkk(nil, ys) -> ys appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys)) reverse(nil) -> nil reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (33) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 1, σ' = [ ], and μ' = [ ] on the rule F(true, cons(a, zr1))[zr1 / cons(a, zr1)]^n[zr1 / nil] -> F(true, cons(a, cons(a, zr1)))[zr1 / cons(a, zr1)]^n[zr1 / nil] This rule is correct for the QDP as the following derivation shows: F(true, cons(a, zr1))[zr1 / cons(a, zr1)]^n[zr1 / nil] -> F(true, cons(a, cons(a, zr1)))[zr1 / cons(a, zr1)]^n[zr1 / nil] by Equivalence by Domain Renaming of the lhs with [zl0 / zr1] intermediate steps: Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) F(true, cons(x1, zl1))[zl1 / cons(x1, zl1)]^n[zl1 / nil] -> F(true, cons(a, cons(x1, zr1)))[zr1 / cons(x1, zr1)]^n[zr1 / nil] by Rewrite t with the rewrite sequence : [([1],append(xs, ys) -> appendAkk(reverse(xs), ys)), ([1,0],reverse(cons(x, xs)) -> append(reverse(xs), cons(x, nil))), ([1,0],append(xs, ys) -> appendAkk(reverse(xs), ys)), ([1,0,0,0],reverse(nil) -> nil), ([1,0,0],reverse(nil) -> nil), ([1,0],appendAkk(nil, ys) -> ys), ([1],appendAkk(cons(x, xs), ys) -> appendAkk(xs, cons(x, ys))), ([1],appendAkk(nil, ys) -> ys)] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) F(true, cons(x1, zl1))[zr1 / cons(x1, zr1), zl1 / cons(x1, zl1)]^n[zr1 / nil, zl1 / nil] -> F(true, append(cons(a, nil), cons(x1, zr1)))[zr1 / cons(x1, zr1), zl1 / cons(x1, zl1)]^n[zr1 / nil, zl1 / nil] by Narrowing at position: [0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) F(true, cons(y0, zs1))[zs1 / cons(y0, zs1)]^n[zs1 / y1] -> F(isList(y1), append(cons(a, nil), cons(y0, zs1)))[zs1 / cons(y0, zs1)]^n[zs1 / y1] by Narrowing at position: [0] intermediate steps: Instantiate mu - Instantiate Sigma - Instantiation - Instantiation F(true, xs)[ ]^n[ ] -> F(isList(xs), append(cons(a, nil), xs))[ ]^n[ ] by Rule from TRS P intermediate steps: Equiv IPS (rhs) - Equiv IPS (rhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) isList(cons(x, xs))[xs / cons(x, xs)]^n[ ] -> isList(xs)[ ]^n[ ] by PatternCreation I with delta: [ ], theta: [ ], sigma: [xs / cons(x, xs)] isList(cons(x, xs))[ ]^n[ ] -> isList(xs)[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) isList(nil)[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R ---------------------------------------- (34) NO