/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 15 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPOrderProof [EQUIVALENT, 31 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x, l)) -> REV1(x, l) REV(cons(x, l)) -> REV2(x, l) REV1(x, cons(y, l)) -> REV1(y, l) REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: REV1(x, cons(y, l)) -> REV1(y, l) The TRS R consists of the following rules: rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: REV1(x, cons(y, l)) -> REV1(y, l) R is empty. The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: REV1(x, cons(y, l)) -> REV1(y, l) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *REV1(x, cons(y, l)) -> REV1(y, l) The graph contains the following edges 2 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x, l)) -> REV2(x, l) REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x, l)) -> REV2(x, l) REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV2(x, cons(y, l)) -> REV2(y, l) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( REV_1(x_1) ) = 2x_1 POL( cons_2(x_1, x_2) ) = 2x_2 + 1 POL( rev2_2(x_1, x_2) ) = x_2 POL( nil ) = 0 POL( rev_1(x_1) ) = x_1 POL( rev1_2(x_1, x_2) ) = 0 POL( 0 ) = 2 POL( s_1(x_1) ) = 2x_1 + 2 POL( REV2_2(x_1, x_2) ) = 2x_2 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x, l)) -> REV2(x, l) The TRS R consists of the following rules: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) rev1(0, nil) -> 0 rev1(s(x), nil) -> s(x) rev1(x, cons(y, l)) -> rev1(y, l) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev1(0, nil) rev1(s(x0), nil) rev1(x0, cons(x1, x2)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (20) TRUE