/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) MNOCProof [EQUIVALENT, 0 ms] (30) QDP (31) NonLoopProof [COMPLETE, 769 ms] (32) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The TRS R 2 is f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) The signature Sigma is {f_2} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, s(x)) -> F(eq(0, minus(x, x)), double(s(x))) F(true, s(x)) -> EQ(0, minus(x, x)) F(true, s(x)) -> MINUS(x, x) F(true, s(x)) -> DOUBLE(s(x)) DOUBLE(s(x)) -> DOUBLE(x) MINUS(s(x), s(y)) -> MINUS(x, y) EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) R is empty. The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOUBLE(s(x)) -> DOUBLE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, s(x)) -> F(eq(0, minus(x, x)), double(s(x))) The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: f(true, s(x0)) double(0) double(s(x0)) minus(x0, 0) minus(0, x0) minus(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, s(x)) -> F(eq(0, minus(x, x)), double(s(x))) The TRS R consists of the following rules: f(true, s(x)) -> f(eq(0, minus(x, x)), double(s(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (31) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 2, b = 2, σ' = [ ], and μ' = [ ] on the rule F(true, s(s(zr0)))[zr0 / s(zr0)]^n[zr0 / 0] -> F(true, s(s(s(s(zr0)))))[zr0 / s(s(zr0))]^n[zr0 / 0] This rule is correct for the QDP as the following derivation shows: F(true, s(s(zr0)))[zr0 / s(zr0)]^n[zr0 / 0] -> F(true, s(s(s(s(zr0)))))[zr0 / s(s(zr0))]^n[zr0 / 0] by Equivalence by Domain Renaming of the lhs with [zl0 / zr0] intermediate steps: Equiv DR (rhs) - Equiv DR (lhs) F(true, s(s(zl1)))[zl1 / s(zl1)]^n[zl1 / 0] -> F(true, s(s(s(s(zr2)))))[zr2 / s(s(zr2))]^n[zr2 / 0] by Rewrite t with the rewrite sequence : [([0,1],minus(x, 0) -> x), ([0],eq(0, 0) -> true)] intermediate steps: Equiv Smu (rhs) F(true, s(s(zl1)))[zl1 / s(zl1)]^n[zl1 / 0] -> F(eq(0, minus(y1, y1)), s(s(s(s(zr2)))))[zr2 / s(s(zr2))]^n[zr2 / 0, y1 / 0] by Rewrite mu at the term of variable: zr2 with the rewrite sequence : [([],double(0) -> 0)] intermediate steps: Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) F(true, s(s(zl1)))[zr2 / s(s(zr2)), zr3 / s(zr3), zl1 / s(zl1)]^n[zr2 / double(y1), zr3 / y1, zl1 / y1, x0 / y1] -> F(eq(0, minus(y1, y1)), s(s(s(s(zr2)))))[zr2 / s(s(zr2)), zr3 / s(zr3), zl1 / s(zl1)]^n[zr2 / double(y1), zr3 / y1, zl1 / y1, x0 / y1] by Narrowing at position: [0,1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Expand Sigma - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (lhs) F(true, s(x0))[zt1 / s(s(zt1)), x0 / s(x0)]^n[zt1 / double(y0), x0 / y0] -> F(eq(0, minus(x0, x0)), s(s(zt1)))[zt1 / s(s(zt1)), x0 / s(x0)]^n[zt1 / double(y0), x0 / y0] by Narrowing at position: [1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation F(true, s(x))[ ]^n[ ] -> F(eq(0, minus(x, x)), double(s(x)))[ ]^n[ ] by Rule from TRS P intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) double(s(x))[x / s(x)]^n[ ] -> s(s(z))[x / s(x), z / s(s(z))]^n[z / double(x)] by PatternCreation II with pi: [0,0], sigma: [x / s(x)] double(s(x))[ ]^n[ ] -> s(s(double(x)))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (lhs) - Equiv Smu (rhs) - Equiv IPS (lhs) - Equiv Smu (lhs) - Instantiate mu - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) minus(s(x), s(y))[x / s(x), y / s(y)]^n[ ] -> minus(x, y)[ ]^n[ ] by PatternCreation I with delta: [ ], theta: [ ], sigma: [x / s(x), y / s(y)] minus(s(x), s(y))[ ]^n[ ] -> minus(x, y)[ ]^n[ ] by Rule from TRS R ---------------------------------------- (32) NO