/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR l x y) (RULES rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: REV(cons(x,l)) -> REV1(x,l) REV(cons(x,l)) -> REV2(x,l) REV1(x,cons(y,l)) -> REV1(y,l) REV2(x,cons(y,l)) -> REV(cons(x,rev2(y,l))) REV2(x,cons(y,l)) -> REV2(y,l) -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil Problem 1: SCC Processor: -> Pairs: REV(cons(x,l)) -> REV1(x,l) REV(cons(x,l)) -> REV2(x,l) REV1(x,cons(y,l)) -> REV1(y,l) REV2(x,cons(y,l)) -> REV(cons(x,rev2(y,l))) REV2(x,cons(y,l)) -> REV2(y,l) -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: REV1(x,cons(y,l)) -> REV1(y,l) ->->-> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->->Cycle: ->->-> Pairs: REV(cons(x,l)) -> REV2(x,l) REV2(x,cons(y,l)) -> REV(cons(x,rev2(y,l))) REV2(x,cons(y,l)) -> REV2(y,l) ->->-> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: REV1(x,cons(y,l)) -> REV1(y,l) -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Projection: pi(REV1) = 2 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: REV(cons(x,l)) -> REV2(x,l) REV2(x,cons(y,l)) -> REV(cons(x,rev2(y,l))) REV2(x,cons(y,l)) -> REV2(y,l) -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil -> Usable rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [rev](X) = X [rev1](X1,X2) = X2 + 2 [rev2](X1,X2) = X2 [0] = 0 [cons](X1,X2) = 2.X2 + 2 [nil] = 1 [s](X) = 2 [REV](X) = 2.X + 1 [REV2](X1,X2) = 2.X2 + 2 Problem 1.2: SCC Processor: -> Pairs: REV2(x,cons(y,l)) -> REV(cons(x,rev2(y,l))) REV2(x,cons(y,l)) -> REV2(y,l) -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: REV2(x,cons(y,l)) -> REV2(y,l) ->->-> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil Problem 1.2: Subterm Processor: -> Pairs: REV2(x,cons(y,l)) -> REV2(y,l) -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Projection: pi(REV2) = 2 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(x),nil) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.