/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. f : [o] --> o g : [o] --> o p : [o] --> o q : [o] --> o p(f(f(X))) => q(f(g(X))) p(g(g(X))) => q(g(f(X))) q(f(f(X))) => p(f(g(X))) q(g(g(X))) => p(g(f(X))) As the system is orthogonal, it is terminating if it is innermost terminating by [Gra95]. Then, by [FuhGieParSchSwi11], it suffices to prove (innermost) termination of the typed system, with sort annotations chosen to respect the rules, as follows: f : [qa] --> qa g : [qa] --> qa p : [qa] --> ra q : [qa] --> ra We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] p#(f(f(X))) =#> q#(f(g(X))) 1] p#(g(g(X))) =#> q#(g(f(X))) 2] q#(f(f(X))) =#> p#(f(g(X))) 3] q#(g(g(X))) =#> p#(g(f(X))) Rules R_0: p(f(f(X))) => q(f(g(X))) p(g(g(X))) => q(g(f(X))) q(f(f(X))) => p(f(g(X))) q(g(g(X))) => p(g(f(X))) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : * 2 : * 3 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhGieParSchSwi11] C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving Termination by Dependency Pairs and Inductive Theorem Proving. In volume 47(2) of Journal of Automated Reasoning. 133--160, 2011. [Gra95] B. Gramlich. Abstract Relations Between Restricted Termination and Confluence Properties of Rewrite Systems. In volume 24(1-2) of Fundamentae Informaticae. 3--23, 1995. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.