/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) MRRProof [EQUIVALENT, 11 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPOrderProof [EQUIVALENT, 61 ms] (22) QDP (23) PisEmptyProof [EQUIVALENT, 0 ms] (24) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) MINUS(minus(x, y), z) -> PLUS(y, z) MINUS(s(x), s(y)) -> MINUS(x, y) PLUS(s(x), y) -> PLUS(x, s(y)) PLUS(s(x), y) -> PLUS(y, x) DIV(x, y) -> QUOT(x, y, 0) QUOT(s(x), s(y), z) -> QUOT(minus(p(ack(0, x)), y), s(y), s(z)) QUOT(s(x), s(y), z) -> MINUS(p(ack(0, x)), y) QUOT(s(x), s(y), z) -> P(ack(0, x)) QUOT(s(x), s(y), z) -> ACK(0, x) ACK(0, x) -> PLUS(x, s(0)) ACK(s(x), 0) -> ACK(x, s(0)) ACK(s(x), s(y)) -> ACK(x, ack(s(x), y)) ACK(s(x), s(y)) -> ACK(s(x), y) The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 6 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(y, x) PLUS(s(x), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(y, x) PLUS(s(x), y) -> PLUS(x, s(y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: PLUS(s(x), y) -> PLUS(y, x) Used ordering: Polynomial interpretation [POLO]: POL(PLUS(x_1, x_2)) = 2*x_1 + 2*x_2 POL(s(x_1)) = 2 + x_1 ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, s(y)) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ACK(s(x), s(y)) -> ACK(x, ack(s(x), y)) ACK(s(x), 0) -> ACK(x, s(0)) ACK(s(x), s(y)) -> ACK(s(x), y) The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACK(s(x), 0) -> ACK(x, s(0)) The graph contains the following edges 1 > 1 *ACK(s(x), s(y)) -> ACK(x, ack(s(x), y)) The graph contains the following edges 1 > 1 *ACK(s(x), s(y)) -> ACK(s(x), y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) The TRS R consists of the following rules: plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 *MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) The graph contains the following edges 1 > 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y), z) -> QUOT(minus(p(ack(0, x)), y), s(y), s(z)) The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(x), s(y), z) -> QUOT(minus(p(ack(0, x)), y), s(y), s(z)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( QUOT_3(x_1, ..., x_3) ) = max{0, x_1 - 1} POL( minus_2(x_1, x_2) ) = x_1 POL( p_1(x_1) ) = max{0, x_1 - 2} POL( ack_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( 0 ) = 0 POL( s_1(x_1) ) = x_1 + 2 POL( plus_2(x_1, x_2) ) = x_1 + x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) p(s(x)) -> x p(0) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) ---------------------------------------- (22) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (24) YES