/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 15 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 80 ms] (34) QDP (35) PisEmptyProof [EQUIVALENT, 0 ms] (36) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK(s(s(s(x)))) -> CHECK(s(x)) HALF(s(s(x))) -> HALF(x) PLUS(s(x), y) -> PLUS(x, y) TIMES(x, y) -> TIMESITER(x, y, 0) TIMESITER(x, y, z) -> IF(check(x), x, y, z, plus(z, y)) TIMESITER(x, y, z) -> CHECK(x) TIMESITER(x, y, z) -> PLUS(z, y) IF(odd, x, y, z, u) -> TIMESITER(p(x), y, u) IF(odd, x, y, z, u) -> P(x) IF(even, x, y, z, u) -> PLUS(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(z)) IF(even, x, y, z, u) -> HALF(x) IF(even, x, y, z, u) -> HALF(z) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(s(z))) IF(even, x, y, z, u) -> HALF(s(z)) The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 8 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK(s(s(s(x)))) -> CHECK(s(x)) The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK(s(s(s(x)))) -> CHECK(s(x)) R is empty. The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK(s(s(s(x)))) -> CHECK(s(x)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CHECK(s(s(s(x)))) -> CHECK(s(x)) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TIMESITER(x, y, z) -> IF(check(x), x, y, z, plus(z, y)) IF(odd, x, y, z, u) -> TIMESITER(p(x), y, u) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(z)) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(s(z))) The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TIMESITER(x, y, z) -> IF(check(x), x, y, z, plus(z, y)) IF(odd, x, y, z, u) -> TIMESITER(p(x), y, u) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(z)) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(s(z))) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) p(s(x)) -> x p(0) -> 0 check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2) p(s(x0)) p(0) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. times(x0, x1) timesIter(x0, x1, x2) if(zero, x0, x1, x2, x3) if(odd, x0, x1, x2, x3) if(even, x0, x1, x2, x3) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TIMESITER(x, y, z) -> IF(check(x), x, y, z, plus(z, y)) IF(odd, x, y, z, u) -> TIMESITER(p(x), y, u) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(z)) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(s(z))) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) p(s(x)) -> x p(0) -> 0 check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) p(s(x0)) p(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TIMESITER(x, y, z) -> IF(check(x), x, y, z, plus(z, y)) IF(odd, x, y, z, u) -> TIMESITER(p(x), y, u) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(z)) IF(even, x, y, z, u) -> TIMESITER(half(x), y, half(s(z))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(IF(x_1, x_2, x_3, x_4, x_5)) = [4]x_1 + x_2 POL(TIMESITER(x_1, x_2, x_3)) = [1/4] + [2]x_1 POL(check(x_1)) = [1/4]x_1 POL(even) = [1/4] POL(half(x_1)) = [1/2]x_1 POL(odd) = [1/4] POL(p(x_1)) = [1/2]x_1 POL(plus(x_1, x_2)) = 0 POL(s(x_1)) = [1] + [2]x_1 POL(zero) = 0 The value of delta used in the strict ordering is 1/4. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) p(s(x)) -> x p(0) -> 0 half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) ---------------------------------------- (34) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) p(s(x)) -> x p(0) -> 0 check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: check(0) check(s(0)) check(s(s(0))) check(s(s(s(x0)))) half(0) half(s(0)) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) p(s(x0)) p(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (36) YES