/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ) Problem 1: Innermost Equivalent Processor: -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: IF_MINUS(false,s(x),y) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) LOG(s(s(x))) -> LOG(s(quot(x,s(s(0))))) LOG(s(s(x))) -> QUOT(x,s(s(0))) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) MINUS(s(x),y) -> LE(s(x),y) QUOT(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Problem 1: SCC Processor: -> Pairs: IF_MINUS(false,s(x),y) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) LOG(s(s(x))) -> LOG(s(quot(x,s(s(0))))) LOG(s(s(x))) -> QUOT(x,s(s(0))) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) MINUS(s(x),y) -> LE(s(x),y) QUOT(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->->Cycle: ->->-> Pairs: IF_MINUS(false,s(x),y) -> MINUS(x,y) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) ->->-> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->->Cycle: ->->-> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) ->->-> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->->Cycle: ->->-> Pairs: LOG(s(s(x))) -> LOG(s(quot(x,s(s(0))))) ->->-> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) The problem is decomposed in 4 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Projection: pi(LE) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: IF_MINUS(false,s(x),y) -> MINUS(x,y) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Projection: pi(IF_MINUS) = 2 pi(MINUS) = 1 Problem 1.2: SCC Processor: -> Pairs: MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) -> Usable rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [if_minus](X1,X2,X3) = 2.X1 + 2.X2 [le](X1,X2) = 0 [minus](X1,X2) = 2.X1 [0] = 2 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [QUOT](X1,X2) = X1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Reduction Pairs Processor: -> Pairs: LOG(s(s(x))) -> LOG(s(quot(x,s(s(0))))) -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) -> Usable rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [if_minus](X1,X2,X3) = X2 [le](X1,X2) = X1 + 2.X2 [minus](X1,X2) = X1 [quot](X1,X2) = 2.X1 + 1 [0] = 2 [false] = 2 [s](X) = 2.X + 2 [true] = 1 [LOG](X) = 2.X Problem 1.4: SCC Processor: -> Pairs: Empty -> Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x,s(s(0)))))) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.