/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 17 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 79 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) ATransformationProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) QDPSizeChangeProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) ATransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) QDPApplicativeOrderProof [EQUIVALENT, 49 ms] (27) QDP (28) UsableRulesProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPSizeChangeProof [EQUIVALENT, 0 ms] (31) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(append, a(a(cons, x), xs)), ys) -> A(a(cons, x), a(a(append, xs), ys)) A(a(append, a(a(cons, x), xs)), ys) -> A(a(append, xs), ys) A(a(append, a(a(cons, x), xs)), ys) -> A(append, xs) A(a(filter, f), a(a(cons, x), xs)) -> A(a(a(if, a(f, x)), x), a(a(filter, f), xs)) A(a(filter, f), a(a(cons, x), xs)) -> A(a(if, a(f, x)), x) A(a(filter, f), a(a(cons, x), xs)) -> A(if, a(f, x)) A(a(filter, f), a(a(cons, x), xs)) -> A(f, x) A(a(filter, f), a(a(cons, x), xs)) -> A(a(filter, f), xs) A(a(le, a(s, x)), a(s, y)) -> A(a(le, x), y) A(a(le, a(s, x)), a(s, y)) -> A(le, x) A(a(a(if, true), x), xs) -> A(a(cons, x), xs) A(a(a(if, true), x), xs) -> A(cons, x) A(a(not, f), b) -> A(not2, a(f, b)) A(a(not, f), b) -> A(f, b) A(qs, a(a(cons, x), xs)) -> A(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) A(qs, a(a(cons, x), xs)) -> A(append, a(qs, a(a(filter, a(le, x)), xs))) A(qs, a(a(cons, x), xs)) -> A(qs, a(a(filter, a(le, x)), xs)) A(qs, a(a(cons, x), xs)) -> A(a(filter, a(le, x)), xs) A(qs, a(a(cons, x), xs)) -> A(filter, a(le, x)) A(qs, a(a(cons, x), xs)) -> A(le, x) A(qs, a(a(cons, x), xs)) -> A(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs))) A(qs, a(a(cons, x), xs)) -> A(qs, a(a(filter, a(not, a(le, x))), xs)) A(qs, a(a(cons, x), xs)) -> A(a(filter, a(not, a(le, x))), xs) A(qs, a(a(cons, x), xs)) -> A(filter, a(not, a(le, x))) A(qs, a(a(cons, x), xs)) -> A(not, a(le, x)) The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 16 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(le, a(s, x)), a(s, y)) -> A(a(le, x), y) The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(le, a(s, x)), a(s, y)) -> A(a(le, x), y) R is empty. The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) ATransformationProof (EQUIVALENT) We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: le1(s(x), s(y)) -> le1(x, y) R is empty. The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) filter(x0, nil) filter(x0, cons(x1, x2)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) not(x0, x1) not2(true) not2(false) qs(nil) qs(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. append(nil, x0) append(cons(x0, x1), x2) filter(x0, nil) filter(x0, cons(x1, x2)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) not(x0, x1) not2(true) not2(false) qs(nil) qs(cons(x0, x1)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: le1(s(x), s(y)) -> le1(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *le1(s(x), s(y)) -> le1(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(append, a(a(cons, x), xs)), ys) -> A(a(append, xs), ys) The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(append, a(a(cons, x), xs)), ys) -> A(a(append, xs), ys) R is empty. The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) ATransformationProof (EQUIVALENT) We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: append1(cons(x, xs), ys) -> append1(xs, ys) R is empty. The set Q consists of the following terms: append(nil, x0) append(cons(x0, x1), x2) filter(x0, nil) filter(x0, cons(x1, x2)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) not(x0, x1) not2(true) not2(false) qs(nil) qs(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. append(nil, x0) append(cons(x0, x1), x2) filter(x0, nil) filter(x0, cons(x1, x2)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) not(x0, x1) not2(true) not2(false) qs(nil) qs(cons(x0, x1)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: append1(cons(x, xs), ys) -> append1(xs, ys) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *append1(cons(x, xs), ys) -> append1(xs, ys) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(filter, f), a(a(cons, x), xs)) -> A(a(filter, f), xs) A(a(filter, f), a(a(cons, x), xs)) -> A(f, x) A(a(not, f), b) -> A(f, b) A(qs, a(a(cons, x), xs)) -> A(qs, a(a(filter, a(le, x)), xs)) A(qs, a(a(cons, x), xs)) -> A(a(filter, a(le, x)), xs) A(qs, a(a(cons, x), xs)) -> A(qs, a(a(filter, a(not, a(le, x))), xs)) A(qs, a(a(cons, x), xs)) -> A(a(filter, a(not, a(le, x))), xs) The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPApplicativeOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04].First, we preprocessed all pairs by applying the argument filter which replaces every head symbol by its second argument. Then we combined the reduction pair processor [LPAR04,JAR06] with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem. The a-transformed P is (cons(x, xs),xs) (cons(x, xs),x) (b,b) (cons(x, xs),filter(le(x), xs)) (cons(x, xs),xs) (cons(x, xs),filter(not(le(x)), xs)) (cons(x, xs),xs) The a-transformed usable rules are filter(f, cons(x, xs)) -> if(notProper, x, filter(f, xs)) if(true, x, xs) -> cons(x, xs) filter(f, nil) -> nil if(false, x, xs) -> xs The following pairs can be oriented strictly and are deleted. A(a(filter, f), a(a(cons, x), xs)) -> A(a(filter, f), xs) A(a(filter, f), a(a(cons, x), xs)) -> A(f, x) A(qs, a(a(cons, x), xs)) -> A(qs, a(a(filter, a(le, x)), xs)) A(qs, a(a(cons, x), xs)) -> A(a(filter, a(le, x)), xs) A(qs, a(a(cons, x), xs)) -> A(qs, a(a(filter, a(not, a(le, x))), xs)) A(qs, a(a(cons, x), xs)) -> A(a(filter, a(not, a(le, x))), xs) The remaining pairs can at least be oriented weakly. A(a(not, f), b) -> A(f, b) Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( filter_2(x_1, x_2) ) = max{0, 2x_2 - 1} POL( cons_2(x_1, x_2) ) = x_1 + 2x_2 + 1 POL( if_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 1 POL( notProper ) = 0 POL( true ) = 0 POL( nil ) = 1 POL( false ) = 0 POL( le_1(x_1) ) = x_1 POL( not_1(x_1) ) = max{0, 2x_1 - 2} The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(filter, f), nil) -> nil a(a(a(if, false), x), xs) -> xs ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(not, f), b) -> A(f, b) The TRS R consists of the following rules: a(a(append, nil), ys) -> ys a(a(append, a(a(cons, x), xs)), ys) -> a(a(cons, x), a(a(append, xs), ys)) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(le, 0), y) -> true a(a(le, a(s, x)), 0) -> false a(a(le, a(s, x)), a(s, y)) -> a(a(le, x), y) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), b) -> a(not2, a(f, b)) a(not2, true) -> false a(not2, false) -> true a(qs, nil) -> nil a(qs, a(a(cons, x), xs)) -> a(a(append, a(qs, a(a(filter, a(le, x)), xs))), a(a(cons, x), a(qs, a(a(filter, a(not, a(le, x))), xs)))) The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(not, f), b) -> A(f, b) R is empty. The set Q consists of the following terms: a(a(append, nil), x0) a(a(append, a(a(cons, x0), x1)), x2) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(le, 0), x0) a(a(le, a(s, x0)), 0) a(a(le, a(s, x0)), a(s, x1)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(qs, nil) a(qs, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A(a(not, f), b) -> A(f, b) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (31) YES