/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. !dot : [o * o] --> o !plus!plus : [o * o] --> o car : [o] --> o cdr : [o] --> o false : [] --> o nil : [] --> o null : [o] --> o rev : [o] --> o true : [] --> o rev(nil) => nil rev(!dot(X, Y)) => !plus!plus(rev(Y), !dot(X, nil)) car(!dot(X, Y)) => X cdr(!dot(X, Y)) => Y null(nil) => true null(!dot(X, Y)) => false !plus!plus(nil, X) => X !plus!plus(!dot(X, Y), Z) => !dot(X, !plus!plus(Y, Z)) As the system is orthogonal, it is terminating if it is innermost terminating by [Gra95]. Then, by [FuhGieParSchSwi11], it suffices to prove (innermost) termination of the typed system, with sort annotations chosen to respect the rules, as follows: !dot : [q * tb] --> tb !plus!plus : [tb * tb] --> tb car : [tb] --> q cdr : [tb] --> tb false : [] --> cb nil : [] --> tb null : [tb] --> cb rev : [tb] --> tb true : [] --> cb We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): rev(nil) >? nil rev(!dot(X, Y)) >? !plus!plus(rev(Y), !dot(X, nil)) car(!dot(X, Y)) >? X cdr(!dot(X, Y)) >? Y null(nil) >? true null(!dot(X, Y)) >? false !plus!plus(nil, X) >? X !plus!plus(!dot(X, Y), Z) >? !dot(X, !plus!plus(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !dot = \y0y1.y0 + y1 !plus!plus = \y0y1.y0 + 2y1 car = \y0.3 + 2y0 cdr = \y0.3 + 2y0 false = 0 nil = 0 null = \y0.3 + 3y0 rev = \y0.2y0 true = 0 Using this interpretation, the requirements translate to: [[rev(nil)]] = 0 >= 0 = [[nil]] [[rev(!dot(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[!plus!plus(rev(_x1), !dot(_x0, nil))]] [[car(!dot(_x0, _x1))]] = 3 + 2x0 + 2x1 > x0 = [[_x0]] [[cdr(!dot(_x0, _x1))]] = 3 + 2x0 + 2x1 > x1 = [[_x1]] [[null(nil)]] = 3 > 0 = [[true]] [[null(!dot(_x0, _x1))]] = 3 + 3x0 + 3x1 > 0 = [[false]] [[!plus!plus(nil, _x0)]] = 2x0 >= x0 = [[_x0]] [[!plus!plus(!dot(_x0, _x1), _x2)]] = x0 + x1 + 2x2 >= x0 + x1 + 2x2 = [[!dot(_x0, !plus!plus(_x1, _x2))]] We can thus remove the following rules: car(!dot(X, Y)) => X cdr(!dot(X, Y)) => Y null(nil) => true null(!dot(X, Y)) => false We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): rev(nil) >? nil rev(!dot(X, Y)) >? !plus!plus(rev(Y), !dot(X, nil)) !plus!plus(nil, X) >? X !plus!plus(!dot(X, Y), Z) >? !dot(X, !plus!plus(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !dot = \y0y1.y0 + y1 !plus!plus = \y0y1.y0 + y1 nil = 0 rev = \y0.1 + y0 Using this interpretation, the requirements translate to: [[rev(nil)]] = 1 > 0 = [[nil]] [[rev(!dot(_x0, _x1))]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[!plus!plus(rev(_x1), !dot(_x0, nil))]] [[!plus!plus(nil, _x0)]] = x0 >= x0 = [[_x0]] [[!plus!plus(!dot(_x0, _x1), _x2)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[!dot(_x0, !plus!plus(_x1, _x2))]] We can thus remove the following rules: rev(nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): rev(!dot(X, Y)) >? !plus!plus(rev(Y), !dot(X, nil)) !plus!plus(nil, X) >? X !plus!plus(!dot(X, Y), Z) >? !dot(X, !plus!plus(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !dot = \y0y1.1 + y1 + 2y0 !plus!plus = \y0y1.y0 + y1 nil = 0 rev = \y0.2y0 Using this interpretation, the requirements translate to: [[rev(!dot(_x0, _x1))]] = 2 + 2x1 + 4x0 > 1 + 2x0 + 2x1 = [[!plus!plus(rev(_x1), !dot(_x0, nil))]] [[!plus!plus(nil, _x0)]] = x0 >= x0 = [[_x0]] [[!plus!plus(!dot(_x0, _x1), _x2)]] = 1 + x1 + x2 + 2x0 >= 1 + x1 + x2 + 2x0 = [[!dot(_x0, !plus!plus(_x1, _x2))]] We can thus remove the following rules: rev(!dot(X, Y)) => !plus!plus(rev(Y), !dot(X, nil)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): !plus!plus(nil, X) >? X !plus!plus(!dot(X, Y), Z) >? !dot(X, !plus!plus(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !dot = \y0y1.3 + y0 + y1 !plus!plus = \y0y1.3 + y1 + 3y0 nil = 3 Using this interpretation, the requirements translate to: [[!plus!plus(nil, _x0)]] = 12 + x0 > x0 = [[_x0]] [[!plus!plus(!dot(_x0, _x1), _x2)]] = 12 + x2 + 3x0 + 3x1 > 6 + x0 + x2 + 3x1 = [[!dot(_x0, !plus!plus(_x1, _x2))]] We can thus remove the following rules: !plus!plus(nil, X) => X !plus!plus(!dot(X, Y), Z) => !dot(X, !plus!plus(Y, Z)) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [FuhGieParSchSwi11] C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving Termination by Dependency Pairs and Inductive Theorem Proving. In volume 47(2) of Journal of Automated Reasoning. 133--160, 2011. [Gra95] B. Gramlich. Abstract Relations Between Restricted Termination and Confluence Properties of Rewrite Systems. In volume 24(1-2) of Fundamentae Informaticae. 3--23, 1995. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.