/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. a : [] --> o activate : [o] --> o f : [o] --> o g : [o] --> o n!6220!6220a : [] --> o n!6220!6220f : [o] --> o n!6220!6220g : [o] --> o f(n!6220!6220f(n!6220!6220a)) => f(n!6220!6220g(n!6220!6220f(n!6220!6220a))) f(X) => n!6220!6220f(X) a => n!6220!6220a g(X) => n!6220!6220g(X) activate(n!6220!6220f(X)) => f(X) activate(n!6220!6220a) => a activate(n!6220!6220g(X)) => g(activate(X)) activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(n!6220!6220f(n!6220!6220a)) >? f(n!6220!6220g(n!6220!6220f(n!6220!6220a))) f(X) >? n!6220!6220f(X) a >? n!6220!6220a g(X) >? n!6220!6220g(X) activate(n!6220!6220f(X)) >? f(X) activate(n!6220!6220a) >? a activate(n!6220!6220g(X)) >? g(activate(X)) activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a = 3 activate = \y0.2y0 f = \y0.2y0 g = \y0.y0 n!6220!6220a = 2 n!6220!6220f = \y0.2y0 n!6220!6220g = \y0.y0 Using this interpretation, the requirements translate to: [[f(n!6220!6220f(n!6220!6220a))]] = 8 >= 8 = [[f(n!6220!6220g(n!6220!6220f(n!6220!6220a)))]] [[f(_x0)]] = 2x0 >= 2x0 = [[n!6220!6220f(_x0)]] [[a]] = 3 > 2 = [[n!6220!6220a]] [[g(_x0)]] = x0 >= x0 = [[n!6220!6220g(_x0)]] [[activate(n!6220!6220f(_x0))]] = 4x0 >= 2x0 = [[f(_x0)]] [[activate(n!6220!6220a)]] = 4 > 3 = [[a]] [[activate(n!6220!6220g(_x0))]] = 2x0 >= 2x0 = [[g(activate(_x0))]] [[activate(_x0)]] = 2x0 >= x0 = [[_x0]] We can thus remove the following rules: a => n!6220!6220a activate(n!6220!6220a) => a We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(n!6220!6220f(n!6220!6220a)) >? f(n!6220!6220g(n!6220!6220f(n!6220!6220a))) f(X) >? n!6220!6220f(X) g(X) >? n!6220!6220g(X) activate(n!6220!6220f(X)) >? f(X) activate(n!6220!6220g(X)) >? g(activate(X)) activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.2y0 f = \y0.2 + y0 g = \y0.y0 n!6220!6220a = 0 n!6220!6220f = \y0.1 + y0 n!6220!6220g = \y0.y0 Using this interpretation, the requirements translate to: [[f(n!6220!6220f(n!6220!6220a))]] = 3 >= 3 = [[f(n!6220!6220g(n!6220!6220f(n!6220!6220a)))]] [[f(_x0)]] = 2 + x0 > 1 + x0 = [[n!6220!6220f(_x0)]] [[g(_x0)]] = x0 >= x0 = [[n!6220!6220g(_x0)]] [[activate(n!6220!6220f(_x0))]] = 2 + 2x0 >= 2 + x0 = [[f(_x0)]] [[activate(n!6220!6220g(_x0))]] = 2x0 >= 2x0 = [[g(activate(_x0))]] [[activate(_x0)]] = 2x0 >= x0 = [[_x0]] We can thus remove the following rules: f(X) => n!6220!6220f(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(n!6220!6220f(n!6220!6220a)) >? f(n!6220!6220g(n!6220!6220f(n!6220!6220a))) g(X) >? n!6220!6220g(X) activate(n!6220!6220f(X)) >? f(X) activate(n!6220!6220g(X)) >? g(activate(X)) activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.3 + y0 f = \y0.2y0 g = \y0.y0 n!6220!6220a = 0 n!6220!6220f = \y0.2y0 n!6220!6220g = \y0.y0 Using this interpretation, the requirements translate to: [[f(n!6220!6220f(n!6220!6220a))]] = 0 >= 0 = [[f(n!6220!6220g(n!6220!6220f(n!6220!6220a)))]] [[g(_x0)]] = x0 >= x0 = [[n!6220!6220g(_x0)]] [[activate(n!6220!6220f(_x0))]] = 3 + 2x0 > 2x0 = [[f(_x0)]] [[activate(n!6220!6220g(_x0))]] = 3 + x0 >= 3 + x0 = [[g(activate(_x0))]] [[activate(_x0)]] = 3 + x0 > x0 = [[_x0]] We can thus remove the following rules: activate(n!6220!6220f(X)) => f(X) activate(X) => X We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] f#(n!6220!6220f(n!6220!6220a)) =#> f#(n!6220!6220g(n!6220!6220f(n!6220!6220a))) 1] activate#(n!6220!6220g(X)) =#> g#(activate(X)) 2] activate#(n!6220!6220g(X)) =#> activate#(X) Rules R_0: f(n!6220!6220f(n!6220!6220a)) => f(n!6220!6220g(n!6220!6220f(n!6220!6220a))) g(X) => n!6220!6220g(X) activate(n!6220!6220g(X)) => g(activate(X)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : * 2 : 1, 2 This graph has the following strongly connected components: P_1: activate#(n!6220!6220g(X)) =#> activate#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(activate#) = 1 Thus, we can orient the dependency pairs as follows: nu(activate#(n!6220!6220g(X))) = n!6220!6220g(X) |> X = nu(activate#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.