/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPOrderProof [EQUIVALENT, 77 ms] (22) QDP (23) QDPOrderProof [EQUIVALENT, 32 ms] (24) QDP (25) QDPSizeChangeProof [EQUIVALENT, 0 ms] (26) YES (27) QDP (28) QDPOrderProof [EQUIVALENT, 26 ms] (29) QDP (30) PisEmptyProof [EQUIVALENT, 0 ms] (31) YES (32) QDP (33) UsableRulesProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPSizeChangeProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPSizeChangeProof [EQUIVALENT, 0 ms] (41) YES (42) QDP (43) QDPOrderProof [EQUIVALENT, 47 ms] (44) QDP (45) PisEmptyProof [EQUIVALENT, 0 ms] (46) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x), s(y)) -> IF(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) G(s(x), s(y)) -> AND(f(s(x)), f(s(y))) G(s(x), s(y)) -> F(s(x)) G(s(x), s(y)) -> F(s(y)) G(s(x), s(y)) -> T(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))) G(s(x), s(y)) -> G(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0)))) G(s(x), s(y)) -> K(minus(m(x, y), n(x, y)), s(s(0))) G(s(x), s(y)) -> MINUS(m(x, y), n(x, y)) G(s(x), s(y)) -> M(x, y) G(s(x), s(y)) -> N(x, y) G(s(x), s(y)) -> K(n(s(x), s(y)), s(s(0))) G(s(x), s(y)) -> N(s(x), s(y)) G(s(x), s(y)) -> G(minus(m(x, y), n(x, y)), n(s(x), s(y))) N(s(x), s(y)) -> N(x, y) M(s(x), s(y)) -> M(x, y) K(s(x), s(y)) -> K(minus(x, y), s(y)) K(s(x), s(y)) -> MINUS(x, y) T(x) -> P(x, x) P(s(x), s(y)) -> P(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) P(s(x), s(y)) -> IF(gt(x, y), x, y) P(s(x), s(y)) -> GT(x, y) P(s(x), s(y)) -> IF(not(gt(x, y)), id(x), id(y)) P(s(x), s(y)) -> NOT(gt(x, y)) P(s(x), s(y)) -> ID(x) P(s(x), s(y)) -> ID(y) P(s(x), x) -> P(if(gt(x, x), id(x), id(x)), s(x)) P(s(x), x) -> IF(gt(x, x), id(x), id(x)) P(s(x), x) -> GT(x, x) P(s(x), x) -> ID(x) P(id(x), s(y)) -> P(x, if(gt(s(y), y), y, s(y))) P(id(x), s(y)) -> IF(gt(s(y), y), y, s(y)) P(id(x), s(y)) -> GT(s(y), y) MINUS(s(x), s(y)) -> MINUS(x, y) NOT(x) -> IF(x, false, true) F(s(x)) -> H(x) H(s(x)) -> F(x) GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 25 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: H(s(x)) -> F(x) F(s(x)) -> H(x) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: H(s(x)) -> F(x) F(s(x)) -> H(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(s(x)) -> H(x) The graph contains the following edges 1 > 1 *H(s(x)) -> F(x) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(x), x) -> P(if(gt(x, x), id(x), id(x)), s(x)) P(s(x), s(y)) -> P(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) P(id(x), s(y)) -> P(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. P(s(x), x) -> P(if(gt(x, x), id(x), id(x)), s(x)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(P(x_1, x_2)) = [[0A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[0A]] + [[4A]] * x_1 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(id(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(not(x_1)) = [[1A]] + [[4A]] * x_1 >>> <<< POL(0) = [[1A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(x), s(y)) -> P(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) P(id(x), s(y)) -> P(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. P(s(x), s(y)) -> P(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(P(x_1, x_2)) = [[0A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[0A]] + [[2A]] * x_1 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(not(x_1)) = [[4A]] + [[2A]] * x_1 >>> <<< POL(id(x_1)) = [[-I]] + [[1A]] * x_1 >>> <<< POL(0) = [[0A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: if(true, x, y) -> x if(false, x, y) -> y id(x) -> x ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: P(id(x), s(y)) -> P(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *P(id(x), s(y)) -> P(x, if(gt(s(y), y), y, s(y))) The graph contains the following edges 1 > 1 ---------------------------------------- (26) YES ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: K(s(x), s(y)) -> K(minus(x, y), s(y)) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. K(s(x), s(y)) -> K(minus(x, y), s(y)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. K(x1, x2) = x1 s(x1) = s(x1) minus(x1, x2) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 dummyConstant=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) ---------------------------------------- (29) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (31) YES ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: M(s(x), s(y)) -> M(x, y) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: M(s(x), s(y)) -> M(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *M(s(x), s(y)) -> M(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: N(s(x), s(y)) -> N(x, y) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: N(s(x), s(y)) -> N(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *N(s(x), s(y)) -> N(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (41) YES ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x), s(y)) -> G(minus(m(x, y), n(x, y)), n(s(x), s(y))) G(s(x), s(y)) -> G(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0)))) The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. G(s(x), s(y)) -> G(minus(m(x, y), n(x, y)), n(s(x), s(y))) G(s(x), s(y)) -> G(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( G_2(x_1, x_2) ) = max{0, 2x_1 + x_2 - 2} POL( minus_2(x_1, x_2) ) = x_1 POL( m_2(x_1, x_2) ) = x_1 + x_2 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 + 1 POL( n_2(x_1, x_2) ) = x_1 POL( k_2(x_1, x_2) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) ---------------------------------------- (44) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (46) YES