/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) MRRProof [EQUIVALENT, 6 ms] (27) QDP (28) PisEmptyProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 45 ms] (36) QDP (37) PisEmptyProof [EQUIVALENT, 0 ms] (38) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: BSORT(.(x, y)) -> LAST(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) BSORT(.(x, y)) -> BUBBLE(.(x, y)) BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y)))) BSORT(.(x, y)) -> BUTLAST(bubble(.(x, y))) BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z)) BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z)) LAST(.(x, .(y, z))) -> LAST(.(y, z)) BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z)) The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z)) The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z)) R is empty. The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z)) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(.(x, .(y, z))) -> LAST(.(y, z)) The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(.(x, .(y, z))) -> LAST(.(y, z)) R is empty. The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(.(x, .(y, z))) -> LAST(.(y, z)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LAST(.(x, .(y, z))) -> LAST(.(y, z)) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z)) BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z)) The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z)) BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z)) R is empty. The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z)) BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z)) BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z)) Used ordering: Knuth-Bendix order [KBO] with precedence:._2 > BUBBLE_1 and weight map: BUBBLE_1=1 ._2=0 The variable weight is 1 ---------------------------------------- (27) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y)))) The TRS R consists of the following rules: bsort(nil) -> nil bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y)))))) bubble(nil) -> nil bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) last(nil) -> 0 last(.(x, nil)) -> x last(.(x, .(y, z))) -> last(.(y, z)) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y)))) The TRS R consists of the following rules: bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bsort(nil) bsort(.(x0, x1)) bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. bsort(nil) bsort(.(x0, x1)) last(nil) last(.(x0, nil)) last(.(x0, .(x1, x2))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y)))) The TRS R consists of the following rules: bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( BSORT_1(x_1) ) = max{0, 2x_1 - 1} POL( butlast_1(x_1) ) = max{0, 2x_1 - 2} POL( bubble_1(x_1) ) = 1 POL( ._2(x_1, x_2) ) = x_2 + 1 POL( nil ) = 0 POL( if_3(x_1, ..., x_3) ) = max{0, x_3 - 1} POL( <=_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) ---------------------------------------- (36) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: bubble(.(x, nil)) -> .(x, nil) bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z)))) butlast(nil) -> nil butlast(.(x, nil)) -> nil butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z))) The set Q consists of the following terms: bubble(nil) bubble(.(x0, nil)) bubble(.(x0, .(x1, x2))) butlast(nil) butlast(.(x0, nil)) butlast(.(x0, .(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (38) YES