/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 52 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) U21(tt, X) -> U22(tt, activate(X)) U22(tt, X) -> activate(X) U31(tt, N) -> U32(tt, activate(N)) U32(tt, N) -> activate(N) U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) U51(tt, Y) -> U52(tt, activate(Y)) U52(tt, Y) -> activate(Y) U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) U71(tt, XS) -> U72(tt, activate(XS)) U72(tt, XS) -> activate(XS) U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) afterNth(N, XS) -> U11(tt, N, XS) fst(pair(X, Y)) -> U21(tt, X) head(cons(N, XS)) -> U31(tt, N) natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) sel(N, XS) -> U41(tt, N, XS) snd(pair(X, Y)) -> U51(tt, Y) splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) tail(cons(N, XS)) -> U71(tt, activate(XS)) take(N, XS) -> U81(tt, N, XS) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: U11^1(tt, N, XS) -> U12^1(tt, activate(N), activate(XS)) U11^1(tt, N, XS) -> ACTIVATE(N) U11^1(tt, N, XS) -> ACTIVATE(XS) U12^1(tt, N, XS) -> SND(splitAt(activate(N), activate(XS))) U12^1(tt, N, XS) -> SPLITAT(activate(N), activate(XS)) U12^1(tt, N, XS) -> ACTIVATE(N) U12^1(tt, N, XS) -> ACTIVATE(XS) U21^1(tt, X) -> U22^1(tt, activate(X)) U21^1(tt, X) -> ACTIVATE(X) U22^1(tt, X) -> ACTIVATE(X) U31^1(tt, N) -> U32^1(tt, activate(N)) U31^1(tt, N) -> ACTIVATE(N) U32^1(tt, N) -> ACTIVATE(N) U41^1(tt, N, XS) -> U42^1(tt, activate(N), activate(XS)) U41^1(tt, N, XS) -> ACTIVATE(N) U41^1(tt, N, XS) -> ACTIVATE(XS) U42^1(tt, N, XS) -> HEAD(afterNth(activate(N), activate(XS))) U42^1(tt, N, XS) -> AFTERNTH(activate(N), activate(XS)) U42^1(tt, N, XS) -> ACTIVATE(N) U42^1(tt, N, XS) -> ACTIVATE(XS) U51^1(tt, Y) -> U52^1(tt, activate(Y)) U51^1(tt, Y) -> ACTIVATE(Y) U52^1(tt, Y) -> ACTIVATE(Y) U61^1(tt, N, X, XS) -> U62^1(tt, activate(N), activate(X), activate(XS)) U61^1(tt, N, X, XS) -> ACTIVATE(N) U61^1(tt, N, X, XS) -> ACTIVATE(X) U61^1(tt, N, X, XS) -> ACTIVATE(XS) U62^1(tt, N, X, XS) -> U63^1(tt, activate(N), activate(X), activate(XS)) U62^1(tt, N, X, XS) -> ACTIVATE(N) U62^1(tt, N, X, XS) -> ACTIVATE(X) U62^1(tt, N, X, XS) -> ACTIVATE(XS) U63^1(tt, N, X, XS) -> U64^1(splitAt(activate(N), activate(XS)), activate(X)) U63^1(tt, N, X, XS) -> SPLITAT(activate(N), activate(XS)) U63^1(tt, N, X, XS) -> ACTIVATE(N) U63^1(tt, N, X, XS) -> ACTIVATE(XS) U63^1(tt, N, X, XS) -> ACTIVATE(X) U64^1(pair(YS, ZS), X) -> ACTIVATE(X) U71^1(tt, XS) -> U72^1(tt, activate(XS)) U71^1(tt, XS) -> ACTIVATE(XS) U72^1(tt, XS) -> ACTIVATE(XS) U81^1(tt, N, XS) -> U82^1(tt, activate(N), activate(XS)) U81^1(tt, N, XS) -> ACTIVATE(N) U81^1(tt, N, XS) -> ACTIVATE(XS) U82^1(tt, N, XS) -> FST(splitAt(activate(N), activate(XS))) U82^1(tt, N, XS) -> SPLITAT(activate(N), activate(XS)) U82^1(tt, N, XS) -> ACTIVATE(N) U82^1(tt, N, XS) -> ACTIVATE(XS) AFTERNTH(N, XS) -> U11^1(tt, N, XS) FST(pair(X, Y)) -> U21^1(tt, X) HEAD(cons(N, XS)) -> U31^1(tt, N) SEL(N, XS) -> U41^1(tt, N, XS) SND(pair(X, Y)) -> U51^1(tt, Y) SPLITAT(s(N), cons(X, XS)) -> U61^1(tt, N, X, activate(XS)) SPLITAT(s(N), cons(X, XS)) -> ACTIVATE(XS) TAIL(cons(N, XS)) -> U71^1(tt, activate(XS)) TAIL(cons(N, XS)) -> ACTIVATE(XS) TAKE(N, XS) -> U81^1(tt, N, XS) ACTIVATE(n__natsFrom(X)) -> NATSFROM(activate(X)) ACTIVATE(n__natsFrom(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) U21(tt, X) -> U22(tt, activate(X)) U22(tt, X) -> activate(X) U31(tt, N) -> U32(tt, activate(N)) U32(tt, N) -> activate(N) U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) U51(tt, Y) -> U52(tt, activate(Y)) U52(tt, Y) -> activate(Y) U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) U71(tt, XS) -> U72(tt, activate(XS)) U72(tt, XS) -> activate(XS) U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) afterNth(N, XS) -> U11(tt, N, XS) fst(pair(X, Y)) -> U21(tt, X) head(cons(N, XS)) -> U31(tt, N) natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) sel(N, XS) -> U41(tt, N, XS) snd(pair(X, Y)) -> U51(tt, Y) splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) tail(cons(N, XS)) -> U71(tt, activate(XS)) take(N, XS) -> U81(tt, N, XS) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 55 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__natsFrom(X)) -> ACTIVATE(X) The TRS R consists of the following rules: U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) U21(tt, X) -> U22(tt, activate(X)) U22(tt, X) -> activate(X) U31(tt, N) -> U32(tt, activate(N)) U32(tt, N) -> activate(N) U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) U51(tt, Y) -> U52(tt, activate(Y)) U52(tt, Y) -> activate(Y) U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) U71(tt, XS) -> U72(tt, activate(XS)) U72(tt, XS) -> activate(XS) U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) afterNth(N, XS) -> U11(tt, N, XS) fst(pair(X, Y)) -> U21(tt, X) head(cons(N, XS)) -> U31(tt, N) natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) sel(N, XS) -> U41(tt, N, XS) snd(pair(X, Y)) -> U51(tt, Y) splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) tail(cons(N, XS)) -> U71(tt, activate(XS)) take(N, XS) -> U81(tt, N, XS) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__natsFrom(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *ACTIVATE(n__natsFrom(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: U62^1(tt, N, X, XS) -> U63^1(tt, activate(N), activate(X), activate(XS)) U63^1(tt, N, X, XS) -> SPLITAT(activate(N), activate(XS)) SPLITAT(s(N), cons(X, XS)) -> U61^1(tt, N, X, activate(XS)) U61^1(tt, N, X, XS) -> U62^1(tt, activate(N), activate(X), activate(XS)) The TRS R consists of the following rules: U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) U21(tt, X) -> U22(tt, activate(X)) U22(tt, X) -> activate(X) U31(tt, N) -> U32(tt, activate(N)) U32(tt, N) -> activate(N) U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) U51(tt, Y) -> U52(tt, activate(Y)) U52(tt, Y) -> activate(Y) U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) U71(tt, XS) -> U72(tt, activate(XS)) U72(tt, XS) -> activate(XS) U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) afterNth(N, XS) -> U11(tt, N, XS) fst(pair(X, Y)) -> U21(tt, X) head(cons(N, XS)) -> U31(tt, N) natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) sel(N, XS) -> U41(tt, N, XS) snd(pair(X, Y)) -> U51(tt, Y) splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) tail(cons(N, XS)) -> U71(tt, activate(XS)) take(N, XS) -> U81(tt, N, XS) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. SPLITAT(s(N), cons(X, XS)) -> U61^1(tt, N, X, activate(XS)) U61^1(tt, N, X, XS) -> U62^1(tt, activate(N), activate(X), activate(XS)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( SPLITAT_2(x_1, x_2) ) = 2x_1 POL( U61^1_4(x_1, ..., x_4) ) = max{0, 2x_1 + 2x_2 - 2} POL( U62^1_4(x_1, ..., x_4) ) = max{0, x_1 + 2x_2 - 2} POL( U63^1_4(x_1, ..., x_4) ) = max{0, x_1 + 2x_2 - 2} POL( activate_1(x_1) ) = x_1 POL( n__natsFrom_1(x_1) ) = 0 POL( natsFrom_1(x_1) ) = max{0, -2} POL( n__s_1(x_1) ) = x_1 + 2 POL( s_1(x_1) ) = x_1 + 2 POL( cons_2(x_1, x_2) ) = max{0, -2} POL( tt ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X s(X) -> n__s(X) natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: U62^1(tt, N, X, XS) -> U63^1(tt, activate(N), activate(X), activate(XS)) U63^1(tt, N, X, XS) -> SPLITAT(activate(N), activate(XS)) The TRS R consists of the following rules: U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) U21(tt, X) -> U22(tt, activate(X)) U22(tt, X) -> activate(X) U31(tt, N) -> U32(tt, activate(N)) U32(tt, N) -> activate(N) U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) U51(tt, Y) -> U52(tt, activate(Y)) U52(tt, Y) -> activate(Y) U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) U71(tt, XS) -> U72(tt, activate(XS)) U72(tt, XS) -> activate(XS) U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) afterNth(N, XS) -> U11(tt, N, XS) fst(pair(X, Y)) -> U21(tt, X) head(cons(N, XS)) -> U31(tt, N) natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) sel(N, XS) -> U41(tt, N, XS) snd(pair(X, Y)) -> U51(tt, Y) splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) tail(cons(N, XS)) -> U71(tt, activate(XS)) take(N, XS) -> U81(tt, N, XS) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (14) TRUE