/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ) Problem 1: Innermost Equivalent Processor: -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: HALF(s(s(x))) -> HALF(x) IF(false,x,y) -> HALF(x) IF(false,x,y) -> LOG2(half(x),y) INC(s(x)) -> INC(x) LE(s(x),s(y)) -> LE(x,y) LOG(x) -> LOG2(x,0) LOG2(x,y) -> IF(le(x,s(0)),x,inc(y)) LOG2(x,y) -> INC(y) LOG2(x,y) -> LE(x,s(0)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) Problem 1: SCC Processor: -> Pairs: HALF(s(s(x))) -> HALF(x) IF(false,x,y) -> HALF(x) IF(false,x,y) -> LOG2(half(x),y) INC(s(x)) -> INC(x) LE(s(x),s(y)) -> LE(x,y) LOG(x) -> LOG2(x,0) LOG2(x,y) -> IF(le(x,s(0)),x,inc(y)) LOG2(x,y) -> INC(y) LOG2(x,y) -> LE(x,s(0)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->->Cycle: ->->-> Pairs: INC(s(x)) -> INC(x) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->->Cycle: ->->-> Pairs: HALF(s(s(x))) -> HALF(x) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->->Cycle: ->->-> Pairs: IF(false,x,y) -> LOG2(half(x),y) LOG2(x,y) -> IF(le(x,s(0)),x,inc(y)) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) The problem is decomposed in 4 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Projection: pi(LE) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: INC(s(x)) -> INC(x) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Projection: pi(INC) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: HALF(s(s(x))) -> HALF(x) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Projection: pi(HALF) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Reduction Pairs Processor: -> Pairs: IF(false,x,y) -> LOG2(half(x),y) LOG2(x,y) -> IF(le(x,s(0)),x,inc(y)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) -> Usable rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [half](X) = 1/2.X [inc](X) = 2.X + 2 [le](X1,X2) = 1/2.X1 + 1/2 [0] = 0 [false] = 1 [s](X) = X + 2 [true] = 1/2 [IF](X1,X2,X3) = 2.X1 + X2 [LOG2](X1,X2) = 2.X1 + 1 Problem 1.4: SCC Processor: -> Pairs: LOG2(x,y) -> IF(le(x,s(0)),x,inc(y)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(false,x,y) -> log2(half(x),y) if(true,x,s(y)) -> y inc(0) -> 0 inc(s(x)) -> s(inc(x)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) log(x) -> log2(x,0) log2(x,y) -> if(le(x,s(0)),x,inc(y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.