/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 30 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 104 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__FILTER(cons(X, Y), s(N), M) -> MARK(X) A__SIEVE(cons(s(N), Y)) -> MARK(N) A__NATS(N) -> MARK(N) A__ZPRIMES -> A__SIEVE(a__nats(s(s(0)))) A__ZPRIMES -> A__NATS(s(s(0))) MARK(filter(X1, X2, X3)) -> A__FILTER(mark(X1), mark(X2), mark(X3)) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(sieve(X)) -> A__SIEVE(mark(X)) MARK(sieve(X)) -> MARK(X) MARK(nats(X)) -> A__NATS(mark(X)) MARK(nats(X)) -> MARK(X) MARK(zprimes) -> A__ZPRIMES MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__FILTER(cons(X, Y), s(N), M) -> MARK(X) A__SIEVE(cons(s(N), Y)) -> MARK(N) A__ZPRIMES -> A__NATS(s(s(0))) MARK(filter(X1, X2, X3)) -> A__FILTER(mark(X1), mark(X2), mark(X3)) MARK(filter(X1, X2, X3)) -> MARK(X1) MARK(filter(X1, X2, X3)) -> MARK(X2) MARK(filter(X1, X2, X3)) -> MARK(X3) MARK(sieve(X)) -> A__SIEVE(mark(X)) MARK(nats(X)) -> A__NATS(mark(X)) MARK(nats(X)) -> MARK(X) MARK(zprimes) -> A__ZPRIMES MARK(cons(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__FILTER_3(x_1, ..., x_3) ) = 2x_1 + 2 POL( A__NATS_1(x_1) ) = 2x_1 + 1 POL( A__SIEVE_1(x_1) ) = max{0, 2x_1 - 2} POL( a__nats_1(x_1) ) = x_1 + 2 POL( cons_2(x_1, x_2) ) = x_1 + 2 POL( mark_1(x_1) ) = x_1 POL( nats_1(x_1) ) = x_1 + 2 POL( s_1(x_1) ) = 2x_1 POL( filter_3(x_1, ..., x_3) ) = x_1 + x_2 + x_3 + 1 POL( a__filter_3(x_1, ..., x_3) ) = x_1 + x_2 + x_3 + 1 POL( sieve_1(x_1) ) = x_1 POL( a__sieve_1(x_1) ) = x_1 POL( zprimes ) = 2 POL( a__zprimes ) = 2 POL( 0 ) = 0 POL( MARK_1(x_1) ) = 2x_1 + 1 POL( A__ZPRIMES ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: a__nats(N) -> cons(mark(N), nats(s(N))) a__nats(X) -> nats(X) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(X) -> sieve(X) a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__zprimes -> zprimes a__zprimes -> a__sieve(a__nats(s(s(0)))) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A__NATS(N) -> MARK(N) A__ZPRIMES -> A__SIEVE(a__nats(s(s(0)))) MARK(sieve(X)) -> MARK(X) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> MARK(X) The TRS R consists of the following rules: a__filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) a__filter(cons(X, Y), s(N), M) -> cons(mark(X), filter(Y, N, M)) a__sieve(cons(0, Y)) -> cons(0, sieve(Y)) a__sieve(cons(s(N), Y)) -> cons(s(mark(N)), sieve(filter(Y, N, N))) a__nats(N) -> cons(mark(N), nats(s(N))) a__zprimes -> a__sieve(a__nats(s(s(0)))) mark(filter(X1, X2, X3)) -> a__filter(mark(X1), mark(X2), mark(X3)) mark(sieve(X)) -> a__sieve(mark(X)) mark(nats(X)) -> a__nats(mark(X)) mark(zprimes) -> a__zprimes mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__filter(X1, X2, X3) -> filter(X1, X2, X3) a__sieve(X) -> sieve(X) a__nats(X) -> nats(X) a__zprimes -> zprimes Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(sieve(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(sieve(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (10) YES