/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220filter : [o * o * o] --> o a!6220!6220nats : [o] --> o a!6220!6220sieve : [o] --> o a!6220!6220zprimes : [] --> o cons : [o * o] --> o filter : [o * o * o] --> o mark : [o] --> o nats : [o] --> o s : [o] --> o sieve : [o] --> o zprimes : [] --> o a!6220!6220filter(cons(X, Y), 0, Z) => cons(0, filter(Y, Z, Z)) a!6220!6220filter(cons(X, Y), s(Z), U) => cons(mark(X), filter(Y, Z, U)) a!6220!6220sieve(cons(0, X)) => cons(0, sieve(X)) a!6220!6220sieve(cons(s(X), Y)) => cons(s(mark(X)), sieve(filter(Y, X, X))) a!6220!6220nats(X) => cons(mark(X), nats(s(X))) a!6220!6220zprimes => a!6220!6220sieve(a!6220!6220nats(s(s(0)))) mark(filter(X, Y, Z)) => a!6220!6220filter(mark(X), mark(Y), mark(Z)) mark(sieve(X)) => a!6220!6220sieve(mark(X)) mark(nats(X)) => a!6220!6220nats(mark(X)) mark(zprimes) => a!6220!6220zprimes mark(cons(X, Y)) => cons(mark(X), Y) mark(0) => 0 mark(s(X)) => s(mark(X)) a!6220!6220filter(X, Y, Z) => filter(X, Y, Z) a!6220!6220sieve(X) => sieve(X) a!6220!6220nats(X) => nats(X) a!6220!6220zprimes => zprimes We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] a!6220!6220filter#(cons(X, Y), s(Z), U) =#> mark#(X) 1] a!6220!6220sieve#(cons(s(X), Y)) =#> mark#(X) 2] a!6220!6220nats#(X) =#> mark#(X) 3] a!6220!6220zprimes# =#> a!6220!6220sieve#(a!6220!6220nats(s(s(0)))) 4] a!6220!6220zprimes# =#> a!6220!6220nats#(s(s(0))) 5] mark#(filter(X, Y, Z)) =#> a!6220!6220filter#(mark(X), mark(Y), mark(Z)) 6] mark#(filter(X, Y, Z)) =#> mark#(X) 7] mark#(filter(X, Y, Z)) =#> mark#(Y) 8] mark#(filter(X, Y, Z)) =#> mark#(Z) 9] mark#(sieve(X)) =#> a!6220!6220sieve#(mark(X)) 10] mark#(sieve(X)) =#> mark#(X) 11] mark#(nats(X)) =#> a!6220!6220nats#(mark(X)) 12] mark#(nats(X)) =#> mark#(X) 13] mark#(zprimes) =#> a!6220!6220zprimes# 14] mark#(cons(X, Y)) =#> mark#(X) 15] mark#(s(X)) =#> mark#(X) Rules R_0: a!6220!6220filter(cons(X, Y), 0, Z) => cons(0, filter(Y, Z, Z)) a!6220!6220filter(cons(X, Y), s(Z), U) => cons(mark(X), filter(Y, Z, U)) a!6220!6220sieve(cons(0, X)) => cons(0, sieve(X)) a!6220!6220sieve(cons(s(X), Y)) => cons(s(mark(X)), sieve(filter(Y, X, X))) a!6220!6220nats(X) => cons(mark(X), nats(s(X))) a!6220!6220zprimes => a!6220!6220sieve(a!6220!6220nats(s(s(0)))) mark(filter(X, Y, Z)) => a!6220!6220filter(mark(X), mark(Y), mark(Z)) mark(sieve(X)) => a!6220!6220sieve(mark(X)) mark(nats(X)) => a!6220!6220nats(mark(X)) mark(zprimes) => a!6220!6220zprimes mark(cons(X, Y)) => cons(mark(X), Y) mark(0) => 0 mark(s(X)) => s(mark(X)) a!6220!6220filter(X, Y, Z) => filter(X, Y, Z) a!6220!6220sieve(X) => sieve(X) a!6220!6220nats(X) => nats(X) a!6220!6220zprimes => zprimes Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220filter#(cons(X, Y), s(Z), U) >? mark#(X) a!6220!6220sieve#(cons(s(X), Y)) >? mark#(X) a!6220!6220nats#(X) >? mark#(X) a!6220!6220zprimes# >? a!6220!6220sieve#(a!6220!6220nats(s(s(0)))) a!6220!6220zprimes# >? a!6220!6220nats#(s(s(0))) mark#(filter(X, Y, Z)) >? a!6220!6220filter#(mark(X), mark(Y), mark(Z)) mark#(filter(X, Y, Z)) >? mark#(X) mark#(filter(X, Y, Z)) >? mark#(Y) mark#(filter(X, Y, Z)) >? mark#(Z) mark#(sieve(X)) >? a!6220!6220sieve#(mark(X)) mark#(sieve(X)) >? mark#(X) mark#(nats(X)) >? a!6220!6220nats#(mark(X)) mark#(nats(X)) >? mark#(X) mark#(zprimes) >? a!6220!6220zprimes# mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220filter(cons(X, Y), 0, Z) >= cons(0, filter(Y, Z, Z)) a!6220!6220filter(cons(X, Y), s(Z), U) >= cons(mark(X), filter(Y, Z, U)) a!6220!6220sieve(cons(0, X)) >= cons(0, sieve(X)) a!6220!6220sieve(cons(s(X), Y)) >= cons(s(mark(X)), sieve(filter(Y, X, X))) a!6220!6220nats(X) >= cons(mark(X), nats(s(X))) a!6220!6220zprimes >= a!6220!6220sieve(a!6220!6220nats(s(s(0)))) mark(filter(X, Y, Z)) >= a!6220!6220filter(mark(X), mark(Y), mark(Z)) mark(sieve(X)) >= a!6220!6220sieve(mark(X)) mark(nats(X)) >= a!6220!6220nats(mark(X)) mark(zprimes) >= a!6220!6220zprimes mark(cons(X, Y)) >= cons(mark(X), Y) mark(0) >= 0 mark(s(X)) >= s(mark(X)) a!6220!6220filter(X, Y, Z) >= filter(X, Y, Z) a!6220!6220sieve(X) >= sieve(X) a!6220!6220nats(X) >= nats(X) a!6220!6220zprimes >= zprimes We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220filter = \y0y1y2.1 + y2 + 2y0 + 2y1 a!6220!6220filter# = \y0y1y2.1 + 2y0 a!6220!6220nats = \y0.2y0 a!6220!6220nats# = \y0.2y0 a!6220!6220sieve = \y0.2y0 a!6220!6220sieve# = \y0.y0 a!6220!6220zprimes = 0 a!6220!6220zprimes# = 0 cons = \y0y1.y0 filter = \y0y1y2.1 + y2 + 2y0 + 2y1 mark = \y0.y0 mark# = \y0.2y0 nats = \y0.2y0 s = \y0.2y0 sieve = \y0.2y0 zprimes = 0 Using this interpretation, the requirements translate to: [[a!6220!6220filter#(cons(_x0, _x1), s(_x2), _x3)]] = 1 + 2x0 > 2x0 = [[mark#(_x0)]] [[a!6220!6220sieve#(cons(s(_x0), _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220nats#(_x0)]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220zprimes#]] = 0 >= 0 = [[a!6220!6220sieve#(a!6220!6220nats(s(s(0))))]] [[a!6220!6220zprimes#]] = 0 >= 0 = [[a!6220!6220nats#(s(s(0)))]] [[mark#(filter(_x0, _x1, _x2))]] = 2 + 2x2 + 4x0 + 4x1 > 1 + 2x0 = [[a!6220!6220filter#(mark(_x0), mark(_x1), mark(_x2))]] [[mark#(filter(_x0, _x1, _x2))]] = 2 + 2x2 + 4x0 + 4x1 > 2x0 = [[mark#(_x0)]] [[mark#(filter(_x0, _x1, _x2))]] = 2 + 2x2 + 4x0 + 4x1 > 2x1 = [[mark#(_x1)]] [[mark#(filter(_x0, _x1, _x2))]] = 2 + 2x2 + 4x0 + 4x1 > 2x2 = [[mark#(_x2)]] [[mark#(sieve(_x0))]] = 4x0 >= x0 = [[a!6220!6220sieve#(mark(_x0))]] [[mark#(sieve(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(nats(_x0))]] = 4x0 >= 2x0 = [[a!6220!6220nats#(mark(_x0))]] [[mark#(nats(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(zprimes)]] = 0 >= 0 = [[a!6220!6220zprimes#]] [[mark#(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220filter(cons(_x0, _x1), 0, _x2)]] = 1 + x2 + 2x0 >= 0 = [[cons(0, filter(_x1, _x2, _x2))]] [[a!6220!6220filter(cons(_x0, _x1), s(_x2), _x3)]] = 1 + x3 + 2x0 + 4x2 >= x0 = [[cons(mark(_x0), filter(_x1, _x2, _x3))]] [[a!6220!6220sieve(cons(0, _x0))]] = 0 >= 0 = [[cons(0, sieve(_x0))]] [[a!6220!6220sieve(cons(s(_x0), _x1))]] = 4x0 >= 2x0 = [[cons(s(mark(_x0)), sieve(filter(_x1, _x0, _x0)))]] [[a!6220!6220nats(_x0)]] = 2x0 >= x0 = [[cons(mark(_x0), nats(s(_x0)))]] [[a!6220!6220zprimes]] = 0 >= 0 = [[a!6220!6220sieve(a!6220!6220nats(s(s(0))))]] [[mark(filter(_x0, _x1, _x2))]] = 1 + x2 + 2x0 + 2x1 >= 1 + x2 + 2x0 + 2x1 = [[a!6220!6220filter(mark(_x0), mark(_x1), mark(_x2))]] [[mark(sieve(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220sieve(mark(_x0))]] [[mark(nats(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220nats(mark(_x0))]] [[mark(zprimes)]] = 0 >= 0 = [[a!6220!6220zprimes]] [[mark(cons(_x0, _x1))]] = x0 >= x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[a!6220!6220filter(_x0, _x1, _x2)]] = 1 + x2 + 2x0 + 2x1 >= 1 + x2 + 2x0 + 2x1 = [[filter(_x0, _x1, _x2)]] [[a!6220!6220sieve(_x0)]] = 2x0 >= 2x0 = [[sieve(_x0)]] [[a!6220!6220nats(_x0)]] = 2x0 >= 2x0 = [[nats(_x0)]] [[a!6220!6220zprimes]] = 0 >= 0 = [[zprimes]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: a!6220!6220sieve#(cons(s(X), Y)) =#> mark#(X) a!6220!6220nats#(X) =#> mark#(X) a!6220!6220zprimes# =#> a!6220!6220sieve#(a!6220!6220nats(s(s(0)))) a!6220!6220zprimes# =#> a!6220!6220nats#(s(s(0))) mark#(sieve(X)) =#> a!6220!6220sieve#(mark(X)) mark#(sieve(X)) =#> mark#(X) mark#(nats(X)) =#> a!6220!6220nats#(mark(X)) mark#(nats(X)) =#> mark#(X) mark#(zprimes) =#> a!6220!6220zprimes# mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220sieve#(cons(s(X), Y)) >? mark#(X) a!6220!6220nats#(X) >? mark#(X) a!6220!6220zprimes# >? a!6220!6220sieve#(a!6220!6220nats(s(s(0)))) a!6220!6220zprimes# >? a!6220!6220nats#(s(s(0))) mark#(sieve(X)) >? a!6220!6220sieve#(mark(X)) mark#(sieve(X)) >? mark#(X) mark#(nats(X)) >? a!6220!6220nats#(mark(X)) mark#(nats(X)) >? mark#(X) mark#(zprimes) >? a!6220!6220zprimes# mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220filter(cons(X, Y), 0, Z) >= cons(0, filter(Y, Z, Z)) a!6220!6220filter(cons(X, Y), s(Z), U) >= cons(mark(X), filter(Y, Z, U)) a!6220!6220sieve(cons(0, X)) >= cons(0, sieve(X)) a!6220!6220sieve(cons(s(X), Y)) >= cons(s(mark(X)), sieve(filter(Y, X, X))) a!6220!6220nats(X) >= cons(mark(X), nats(s(X))) a!6220!6220zprimes >= a!6220!6220sieve(a!6220!6220nats(s(s(0)))) mark(filter(X, Y, Z)) >= a!6220!6220filter(mark(X), mark(Y), mark(Z)) mark(sieve(X)) >= a!6220!6220sieve(mark(X)) mark(nats(X)) >= a!6220!6220nats(mark(X)) mark(zprimes) >= a!6220!6220zprimes mark(cons(X, Y)) >= cons(mark(X), Y) mark(0) >= 0 mark(s(X)) >= s(mark(X)) a!6220!6220filter(X, Y, Z) >= filter(X, Y, Z) a!6220!6220sieve(X) >= sieve(X) a!6220!6220nats(X) >= nats(X) a!6220!6220zprimes >= zprimes We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220filter = \y0y1y2.2 + 2y0 + 2y1 + 2y2 a!6220!6220nats = \y0.2y0 a!6220!6220nats# = \y0.2y0 a!6220!6220sieve = \y0.2y0 a!6220!6220sieve# = \y0.2y0 a!6220!6220zprimes = 2 a!6220!6220zprimes# = 1 cons = \y0y1.y0 filter = \y0y1y2.2 + 2y0 + 2y1 + 2y2 mark = \y0.y0 mark# = \y0.y0 nats = \y0.2y0 s = \y0.y0 sieve = \y0.2y0 zprimes = 2 Using this interpretation, the requirements translate to: [[a!6220!6220sieve#(cons(s(_x0), _x1))]] = 2x0 >= x0 = [[mark#(_x0)]] [[a!6220!6220nats#(_x0)]] = 2x0 >= x0 = [[mark#(_x0)]] [[a!6220!6220zprimes#]] = 1 > 0 = [[a!6220!6220sieve#(a!6220!6220nats(s(s(0))))]] [[a!6220!6220zprimes#]] = 1 > 0 = [[a!6220!6220nats#(s(s(0)))]] [[mark#(sieve(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220sieve#(mark(_x0))]] [[mark#(sieve(_x0))]] = 2x0 >= x0 = [[mark#(_x0)]] [[mark#(nats(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220nats#(mark(_x0))]] [[mark#(nats(_x0))]] = 2x0 >= x0 = [[mark#(_x0)]] [[mark#(zprimes)]] = 2 > 1 = [[a!6220!6220zprimes#]] [[mark#(cons(_x0, _x1))]] = x0 >= x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = x0 >= x0 = [[mark#(_x0)]] [[a!6220!6220filter(cons(_x0, _x1), 0, _x2)]] = 2 + 2x0 + 2x2 >= 0 = [[cons(0, filter(_x1, _x2, _x2))]] [[a!6220!6220filter(cons(_x0, _x1), s(_x2), _x3)]] = 2 + 2x0 + 2x2 + 2x3 >= x0 = [[cons(mark(_x0), filter(_x1, _x2, _x3))]] [[a!6220!6220sieve(cons(0, _x0))]] = 0 >= 0 = [[cons(0, sieve(_x0))]] [[a!6220!6220sieve(cons(s(_x0), _x1))]] = 2x0 >= x0 = [[cons(s(mark(_x0)), sieve(filter(_x1, _x0, _x0)))]] [[a!6220!6220nats(_x0)]] = 2x0 >= x0 = [[cons(mark(_x0), nats(s(_x0)))]] [[a!6220!6220zprimes]] = 2 >= 0 = [[a!6220!6220sieve(a!6220!6220nats(s(s(0))))]] [[mark(filter(_x0, _x1, _x2))]] = 2 + 2x0 + 2x1 + 2x2 >= 2 + 2x0 + 2x1 + 2x2 = [[a!6220!6220filter(mark(_x0), mark(_x1), mark(_x2))]] [[mark(sieve(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220sieve(mark(_x0))]] [[mark(nats(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220nats(mark(_x0))]] [[mark(zprimes)]] = 2 >= 2 = [[a!6220!6220zprimes]] [[mark(cons(_x0, _x1))]] = x0 >= x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[a!6220!6220filter(_x0, _x1, _x2)]] = 2 + 2x0 + 2x1 + 2x2 >= 2 + 2x0 + 2x1 + 2x2 = [[filter(_x0, _x1, _x2)]] [[a!6220!6220sieve(_x0)]] = 2x0 >= 2x0 = [[sieve(_x0)]] [[a!6220!6220nats(_x0)]] = 2x0 >= 2x0 = [[nats(_x0)]] [[a!6220!6220zprimes]] = 2 >= 2 = [[zprimes]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_2, R_0, minimal, formative), where P_2 consists of: a!6220!6220sieve#(cons(s(X), Y)) =#> mark#(X) a!6220!6220nats#(X) =#> mark#(X) mark#(sieve(X)) =#> a!6220!6220sieve#(mark(X)) mark#(sieve(X)) =#> mark#(X) mark#(nats(X)) =#> a!6220!6220nats#(mark(X)) mark#(nats(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220sieve#(cons(s(X), Y)) >? mark#(X) a!6220!6220nats#(X) >? mark#(X) mark#(sieve(X)) >? a!6220!6220sieve#(mark(X)) mark#(sieve(X)) >? mark#(X) mark#(nats(X)) >? a!6220!6220nats#(mark(X)) mark#(nats(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220filter(cons(X, Y), 0, Z) >= cons(0, filter(Y, Z, Z)) a!6220!6220filter(cons(X, Y), s(Z), U) >= cons(mark(X), filter(Y, Z, U)) a!6220!6220sieve(cons(0, X)) >= cons(0, sieve(X)) a!6220!6220sieve(cons(s(X), Y)) >= cons(s(mark(X)), sieve(filter(Y, X, X))) a!6220!6220nats(X) >= cons(mark(X), nats(s(X))) a!6220!6220zprimes >= a!6220!6220sieve(a!6220!6220nats(s(s(0)))) mark(filter(X, Y, Z)) >= a!6220!6220filter(mark(X), mark(Y), mark(Z)) mark(sieve(X)) >= a!6220!6220sieve(mark(X)) mark(nats(X)) >= a!6220!6220nats(mark(X)) mark(zprimes) >= a!6220!6220zprimes mark(cons(X, Y)) >= cons(mark(X), Y) mark(0) >= 0 mark(s(X)) >= s(mark(X)) a!6220!6220filter(X, Y, Z) >= filter(X, Y, Z) a!6220!6220sieve(X) >= sieve(X) a!6220!6220nats(X) >= nats(X) a!6220!6220zprimes >= zprimes We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220filter = \y0y1y2.y0 + 2y2 a!6220!6220nats = \y0.2y0 a!6220!6220nats# = \y0.2y0 a!6220!6220sieve = \y0.1 + 2y0 a!6220!6220sieve# = \y0.y0 a!6220!6220zprimes = 2 cons = \y0y1.y0 filter = \y0y1y2.y0 + 2y2 mark = \y0.y0 mark# = \y0.2y0 nats = \y0.2y0 s = \y0.2y0 sieve = \y0.1 + 2y0 zprimes = 2 Using this interpretation, the requirements translate to: [[a!6220!6220sieve#(cons(s(_x0), _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220nats#(_x0)]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(sieve(_x0))]] = 2 + 4x0 > x0 = [[a!6220!6220sieve#(mark(_x0))]] [[mark#(sieve(_x0))]] = 2 + 4x0 > 2x0 = [[mark#(_x0)]] [[mark#(nats(_x0))]] = 4x0 >= 2x0 = [[a!6220!6220nats#(mark(_x0))]] [[mark#(nats(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220filter(cons(_x0, _x1), 0, _x2)]] = x0 + 2x2 >= 0 = [[cons(0, filter(_x1, _x2, _x2))]] [[a!6220!6220filter(cons(_x0, _x1), s(_x2), _x3)]] = x0 + 2x3 >= x0 = [[cons(mark(_x0), filter(_x1, _x2, _x3))]] [[a!6220!6220sieve(cons(0, _x0))]] = 1 >= 0 = [[cons(0, sieve(_x0))]] [[a!6220!6220sieve(cons(s(_x0), _x1))]] = 1 + 4x0 >= 2x0 = [[cons(s(mark(_x0)), sieve(filter(_x1, _x0, _x0)))]] [[a!6220!6220nats(_x0)]] = 2x0 >= x0 = [[cons(mark(_x0), nats(s(_x0)))]] [[a!6220!6220zprimes]] = 2 >= 1 = [[a!6220!6220sieve(a!6220!6220nats(s(s(0))))]] [[mark(filter(_x0, _x1, _x2))]] = x0 + 2x2 >= x0 + 2x2 = [[a!6220!6220filter(mark(_x0), mark(_x1), mark(_x2))]] [[mark(sieve(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[a!6220!6220sieve(mark(_x0))]] [[mark(nats(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220nats(mark(_x0))]] [[mark(zprimes)]] = 2 >= 2 = [[a!6220!6220zprimes]] [[mark(cons(_x0, _x1))]] = x0 >= x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[a!6220!6220filter(_x0, _x1, _x2)]] = x0 + 2x2 >= x0 + 2x2 = [[filter(_x0, _x1, _x2)]] [[a!6220!6220sieve(_x0)]] = 1 + 2x0 >= 1 + 2x0 = [[sieve(_x0)]] [[a!6220!6220nats(_x0)]] = 2x0 >= 2x0 = [[nats(_x0)]] [[a!6220!6220zprimes]] = 2 >= 2 = [[zprimes]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_0, minimal, formative) by (P_3, R_0, minimal, formative), where P_3 consists of: a!6220!6220sieve#(cons(s(X), Y)) =#> mark#(X) a!6220!6220nats#(X) =#> mark#(X) mark#(nats(X)) =#> a!6220!6220nats#(mark(X)) mark#(nats(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 2, 3, 4, 5 * 1 : 2, 3, 4, 5 * 2 : 1 * 3 : 2, 3, 4, 5 * 4 : 2, 3, 4, 5 * 5 : 2, 3, 4, 5 This graph has the following strongly connected components: P_4: a!6220!6220nats#(X) =#> mark#(X) mark#(nats(X)) =#> a!6220!6220nats#(mark(X)) mark#(nats(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_3, R_0, m, f) by (P_4, R_0, m, f). Thus, the original system is terminating if (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220nats#(X) >? mark#(X) mark#(nats(X)) >? a!6220!6220nats#(mark(X)) mark#(nats(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220filter(cons(X, Y), 0, Z) >= cons(0, filter(Y, Z, Z)) a!6220!6220filter(cons(X, Y), s(Z), U) >= cons(mark(X), filter(Y, Z, U)) a!6220!6220sieve(cons(0, X)) >= cons(0, sieve(X)) a!6220!6220sieve(cons(s(X), Y)) >= cons(s(mark(X)), sieve(filter(Y, X, X))) a!6220!6220nats(X) >= cons(mark(X), nats(s(X))) a!6220!6220zprimes >= a!6220!6220sieve(a!6220!6220nats(s(s(0)))) mark(filter(X, Y, Z)) >= a!6220!6220filter(mark(X), mark(Y), mark(Z)) mark(sieve(X)) >= a!6220!6220sieve(mark(X)) mark(nats(X)) >= a!6220!6220nats(mark(X)) mark(zprimes) >= a!6220!6220zprimes mark(cons(X, Y)) >= cons(mark(X), Y) mark(0) >= 0 mark(s(X)) >= s(mark(X)) a!6220!6220filter(X, Y, Z) >= filter(X, Y, Z) a!6220!6220sieve(X) >= sieve(X) a!6220!6220nats(X) >= nats(X) a!6220!6220zprimes >= zprimes We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220filter = \y0y1y2.2y0 a!6220!6220nats = \y0.1 + y0 a!6220!6220nats# = \y0.1 + y0 a!6220!6220sieve = \y0.2y0 a!6220!6220zprimes = 2 cons = \y0y1.1 + y0 filter = \y0y1y2.2y0 mark = \y0.y0 mark# = \y0.y0 nats = \y0.1 + y0 s = \y0.y0 sieve = \y0.2y0 zprimes = 2 Using this interpretation, the requirements translate to: [[a!6220!6220nats#(_x0)]] = 1 + x0 > x0 = [[mark#(_x0)]] [[mark#(nats(_x0))]] = 1 + x0 >= 1 + x0 = [[a!6220!6220nats#(mark(_x0))]] [[mark#(nats(_x0))]] = 1 + x0 > x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 1 + x0 > x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = x0 >= x0 = [[mark#(_x0)]] [[a!6220!6220filter(cons(_x0, _x1), 0, _x2)]] = 2 + 2x0 >= 1 = [[cons(0, filter(_x1, _x2, _x2))]] [[a!6220!6220filter(cons(_x0, _x1), s(_x2), _x3)]] = 2 + 2x0 >= 1 + x0 = [[cons(mark(_x0), filter(_x1, _x2, _x3))]] [[a!6220!6220sieve(cons(0, _x0))]] = 2 >= 1 = [[cons(0, sieve(_x0))]] [[a!6220!6220sieve(cons(s(_x0), _x1))]] = 2 + 2x0 >= 1 + x0 = [[cons(s(mark(_x0)), sieve(filter(_x1, _x0, _x0)))]] [[a!6220!6220nats(_x0)]] = 1 + x0 >= 1 + x0 = [[cons(mark(_x0), nats(s(_x0)))]] [[a!6220!6220zprimes]] = 2 >= 2 = [[a!6220!6220sieve(a!6220!6220nats(s(s(0))))]] [[mark(filter(_x0, _x1, _x2))]] = 2x0 >= 2x0 = [[a!6220!6220filter(mark(_x0), mark(_x1), mark(_x2))]] [[mark(sieve(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220sieve(mark(_x0))]] [[mark(nats(_x0))]] = 1 + x0 >= 1 + x0 = [[a!6220!6220nats(mark(_x0))]] [[mark(zprimes)]] = 2 >= 2 = [[a!6220!6220zprimes]] [[mark(cons(_x0, _x1))]] = 1 + x0 >= 1 + x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[a!6220!6220filter(_x0, _x1, _x2)]] = 2x0 >= 2x0 = [[filter(_x0, _x1, _x2)]] [[a!6220!6220sieve(_x0)]] = 2x0 >= 2x0 = [[sieve(_x0)]] [[a!6220!6220nats(_x0)]] = 1 + x0 >= 1 + x0 = [[nats(_x0)]] [[a!6220!6220zprimes]] = 2 >= 2 = [[zprimes]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_4, R_0, minimal, formative) by (P_5, R_0, minimal, formative), where P_5 consists of: mark#(nats(X)) =#> a!6220!6220nats#(mark(X)) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1 This graph has the following strongly connected components: P_6: mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_5, R_0, m, f) by (P_6, R_0, m, f). Thus, the original system is terminating if (P_6, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(s(X))) = s(X) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_6, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.