/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 91 ms] (12) QDP (13) QDPOrderProof [EQUIVALENT, 16 ms] (14) QDP (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] (16) YES (17) QDP (18) QDPOrderProof [EQUIVALENT, 60 ms] (19) QDP (20) TransformationProof [EQUIVALENT, 0 ms] (21) QDP (22) TransformationProof [EQUIVALENT, 0 ms] (23) QDP (24) DependencyGraphProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPOrderProof [EQUIVALENT, 2016 ms] (31) QDP (32) UsableRulesProof [EQUIVALENT, 0 ms] (33) QDP (34) QDPSizeChangeProof [EQUIVALENT, 0 ms] (35) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, plus(y, s(z))) -> PLUS(times(x, plus(y, times(s(z), 0))), times(x, s(z))) TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0))) TIMES(x, plus(y, s(z))) -> PLUS(y, times(s(z), 0)) TIMES(x, plus(y, s(z))) -> TIMES(s(z), 0) TIMES(x, plus(y, s(z))) -> TIMES(x, s(z)) TIMES(x, s(y)) -> PLUS(times(x, y), x) TIMES(x, s(y)) -> TIMES(x, y) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), s(y)) -> IF(gt(x, y), x, y) PLUS(s(x), s(y)) -> GT(x, y) PLUS(s(x), s(y)) -> IF(not(gt(x, y)), id(x), id(y)) PLUS(s(x), s(y)) -> NOT(gt(x, y)) PLUS(s(x), s(y)) -> ID(x) PLUS(s(x), s(y)) -> ID(y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), x) -> IF(gt(x, x), id(x), id(x)) PLUS(s(x), x) -> GT(x, x) PLUS(s(x), x) -> ID(x) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) PLUS(id(x), s(y)) -> IF(gt(s(y), y), y, s(y)) PLUS(id(x), s(y)) -> GT(s(y), y) NOT(x) -> IF(x, false, true) GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 16 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(PLUS(x_1, x_2)) = [[0A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[0A]] + [[4A]] * x_1 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(id(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(not(x_1)) = [[1A]] + [[4A]] * x_1 >>> <<< POL(zero) = [[1A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(PLUS(x_1, x_2)) = [[0A]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[0A]] + [[2A]] * x_1 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(not(x_1)) = [[4A]] + [[2A]] * x_1 >>> <<< POL(id(x_1)) = [[-I]] + [[1A]] * x_1 >>> <<< POL(zero) = [[0A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: if(true, x, y) -> x if(false, x, y) -> y id(x) -> x ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The graph contains the following edges 1 > 1 ---------------------------------------- (16) YES ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, plus(y, s(z))) -> TIMES(x, s(z)) TIMES(x, s(y)) -> TIMES(x, y) TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0))) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TIMES(x, plus(y, s(z))) -> TIMES(x, s(z)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(TIMES(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(plus(x_1, x_2)) = [[1A]] + [[1A]] * x_1 + [[1A]] * x_2 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(times(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[-I]] * x_2 >>> <<< POL(not(x_1)) = [[3A]] + [[4A]] * x_1 >>> <<< POL(id(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(zero) = [[0A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: times(x, 0) -> 0 plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0))) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0))) at position [1] we obtained the following new rules [LPAR04]: (TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))),TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0))))) (TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, times(s(y2), 0)),TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, times(s(y2), 0))) (TIMES(y0, plus(y1, s(y2))) -> TIMES(y0, plus(y1, 0)),TIMES(y0, plus(y1, s(y2))) -> TIMES(y0, plus(y1, 0))) ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))) TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, times(s(y2), 0)) TIMES(y0, plus(y1, s(y2))) -> TIMES(y0, plus(y1, 0)) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, times(s(y2), 0)) at position [1] we obtained the following new rules [LPAR04]: (TIMES(y0, plus(zero, s(y1))) -> TIMES(y0, 0),TIMES(y0, plus(zero, s(y1))) -> TIMES(y0, 0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))) TIMES(y0, plus(y1, s(y2))) -> TIMES(y0, plus(y1, 0)) TIMES(y0, plus(zero, s(y1))) -> TIMES(y0, 0) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))) TIMES(y0, plus(y1, s(y2))) -> TIMES(y0, plus(y1, 0)) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TIMES(y0, plus(y1, s(y2))) -> TIMES(y0, plus(y1, 0)) at position [1] we obtained the following new rules [LPAR04]: (TIMES(y0, plus(s(0), s(y2))) -> TIMES(y0, plus(if(gt(0, 0), id(0), id(0)), s(0))),TIMES(y0, plus(s(0), s(y2))) -> TIMES(y0, plus(if(gt(0, 0), id(0), id(0)), s(0)))) (TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, 0),TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, 0)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))) TIMES(y0, plus(s(0), s(y2))) -> TIMES(y0, plus(if(gt(0, 0), id(0), id(0)), s(0))) TIMES(y0, plus(zero, s(y2))) -> TIMES(y0, 0) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TIMES(y0, plus(s(times(s(y2), 0)), s(y2))) -> TIMES(y0, plus(if(gt(times(s(y2), 0), times(s(y2), 0)), id(times(s(y2), 0)), id(times(s(y2), 0))), s(times(s(y2), 0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(TIMES(x_1, x_2)) = [[0A]] + [[-I, -I, -I]] * x_1 + [[-I, 0A, -I]] * x_2 >>> <<< POL(s(x_1)) = [[1A], [-I], [-I]] + [[0A, 0A, 0A], [-I, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(plus(x_1, x_2)) = [[-I], [0A], [-I]] + [[0A, -I, 0A], [0A, -I, -I], [0A, 0A, -I]] * x_1 + [[0A, 0A, -I], [-I, 0A, 0A], [-I, -I, 0A]] * x_2 >>> <<< POL(times(x_1, x_2)) = [[0A], [-I], [-I]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[0A, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_2 >>> <<< POL(0) = [[0A], [-I], [-I]] >>> <<< POL(if(x_1, x_2, x_3)) = [[-I], [0A], [-I]] + [[-I, -I, -I], [-I, -I, -I], [-I, 0A, 0A]] * x_1 + [[0A, -I, -I], [-I, 0A, -I], [-I, -I, 0A]] * x_2 + [[0A, -I, -I], [-I, 0A, -I], [-I, -I, 0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[0A], [-I], [-I]] + [[0A, 0A, 0A], [-I, -I, 0A], [-I, -I, 0A]] * x_1 + [[0A, -I, 0A], [-I, -I, 0A], [-I, -I, 0A]] * x_2 >>> <<< POL(id(x_1)) = [[-I], [1A], [-I]] + [[0A, 0A, 0A], [0A, 0A, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(zero) = [[0A], [-I], [3A]] >>> <<< POL(true) = [[0A], [0A], [-I]] >>> <<< POL(false) = [[0A], [-I], [-I]] >>> <<< POL(not(x_1)) = [[1A], [0A], [-I]] + [[-I, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: times(x, 0) -> 0 gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) not(x) -> if(x, false, true) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) The TRS R consists of the following rules: times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) -> 0 times(x, s(y)) -> plus(times(x, y), x) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, s(y)) -> TIMES(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TIMES(x, s(y)) -> TIMES(x, y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (35) YES