/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 8 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPOrderProof [EQUIVALENT, 54 ms] (13) QDP (14) PisEmptyProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPOrderProof [EQUIVALENT, 27 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) last(x, l) -> if(empty(l), x, l) if(true, x, l) -> x if(false, x, l) -> last(head(l), tail(l)) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) last(x, l) -> if(empty(l), x, l) if(true, x, l) -> x if(false, x, l) -> last(head(l), tail(l)) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x, l)) -> REV2(x, l) LAST(x, l) -> IF(empty(l), x, l) LAST(x, l) -> EMPTY(l) IF(false, x, l) -> LAST(head(l), tail(l)) IF(false, x, l) -> HEAD(l) IF(false, x, l) -> TAIL(l) REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) last(x, l) -> if(empty(l), x, l) if(true, x, l) -> x if(false, x, l) -> last(head(l), tail(l)) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, l) -> LAST(head(l), tail(l)) LAST(x, l) -> IF(empty(l), x, l) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) last(x, l) -> if(empty(l), x, l) if(true, x, l) -> x if(false, x, l) -> last(head(l), tail(l)) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, l) -> LAST(head(l), tail(l)) LAST(x, l) -> IF(empty(l), x, l) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, l) -> LAST(head(l), tail(l)) LAST(x, l) -> IF(empty(l), x, l) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF(false, x, l) -> LAST(head(l), tail(l)) LAST(x, l) -> IF(empty(l), x, l) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(IF(x_1, x_2, x_3)) = [2]x_1 + [2]x_3 POL(LAST(x_1, x_2)) = [1/2] + [4]x_2 POL(cons(x_1, x_2)) = [1] + [1/4]x_1 + [4]x_2 POL(empty(x_1)) = x_1 POL(false) = [1] POL(head(x_1)) = 0 POL(nil) = 0 POL(tail(x_1)) = [1/4]x_1 POL(true) = 0 The value of delta used in the strict ordering is 1/2. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: tail(nil) -> nil tail(cons(x, l)) -> l empty(nil) -> true empty(cons(x, l)) -> false ---------------------------------------- (13) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV(cons(x, l)) -> REV2(x, l) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, l)) -> false head(cons(x, l)) -> x tail(nil) -> nil tail(cons(x, l)) -> l rev(nil) -> nil rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) last(x, l) -> if(empty(l), x, l) if(true, x, l) -> x if(false, x, l) -> last(head(l), tail(l)) rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV(cons(x, l)) -> REV2(x, l) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) The set Q consists of the following terms: empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) rev(nil) rev(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. empty(nil) empty(cons(x0, x1)) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) last(x0, x1) if(true, x0, x1) if(false, x0, x1) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV(cons(x, l)) -> REV2(x, l) REV2(x, cons(y, l)) -> REV2(y, l) The TRS R consists of the following rules: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l))) REV2(x, cons(y, l)) -> REV2(y, l) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( REV_1(x_1) ) = max{0, 2x_1 - 2} POL( cons_2(x_1, x_2) ) = 2x_2 + 1 POL( rev2_2(x_1, x_2) ) = x_2 POL( nil ) = 2 POL( rev_1(x_1) ) = x_1 POL( rev1_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( REV2_2(x_1, x_2) ) = 2x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x, l)) -> REV2(x, l) The TRS R consists of the following rules: rev2(x, nil) -> nil rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l))) rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l)) The set Q consists of the following terms: rev(nil) rev(cons(x0, x1)) rev2(x0, nil) rev2(x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (24) TRUE