/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) UsableRulesProof [EQUIVALENT, 0 ms] (6) QDP (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: AND(true, X) -> ACTIVATE(X) IF(true, X, Y) -> ACTIVATE(X) IF(false, X, Y) -> ACTIVATE(Y) ADD(0, X) -> ACTIVATE(X) ADD(s(X), Y) -> S(n__add(activate(X), activate(Y))) ADD(s(X), Y) -> ACTIVATE(X) ADD(s(X), Y) -> ACTIVATE(Y) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(X1, X2) ACTIVATE(n__first(X1, X2)) -> FIRST(X1, X2) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__s(X)) -> S(X) The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__add(X1, X2)) -> ADD(X1, X2) ADD(0, X) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(X1, X2) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ADD(s(X), Y) -> ACTIVATE(X) ADD(s(X), Y) -> ACTIVATE(Y) The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__add(X1, X2)) -> ADD(X1, X2) ADD(0, X) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(X1, X2) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ADD(s(X), Y) -> ACTIVATE(X) ADD(s(X), Y) -> ACTIVATE(Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__add(X1, X2)) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 1 > 2 *FROM(X) -> ACTIVATE(X) The graph contains the following edges 1 >= 1 *ACTIVATE(n__first(X1, X2)) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 1 > 2 *ACTIVATE(n__from(X)) -> FROM(X) The graph contains the following edges 1 > 1 *ADD(0, X) -> ACTIVATE(X) The graph contains the following edges 2 >= 1 *ADD(s(X), Y) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *ADD(s(X), Y) -> ACTIVATE(Y) The graph contains the following edges 2 >= 1 *FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) The graph contains the following edges 2 > 1 *FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The graph contains the following edges 2 > 1 ---------------------------------------- (8) YES