/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. active : [o] --> o c : [o] --> o d : [o] --> o f : [o] --> o g : [o] --> o h : [o] --> o mark : [o] --> o active(f(f(X))) => mark(c(f(g(f(X))))) active(c(X)) => mark(d(X)) active(h(X)) => mark(c(d(X))) mark(f(X)) => active(f(mark(X))) mark(c(X)) => active(c(X)) mark(g(X)) => active(g(X)) mark(d(X)) => active(d(X)) mark(h(X)) => active(h(mark(X))) f(mark(X)) => f(X) f(active(X)) => f(X) c(mark(X)) => c(X) c(active(X)) => c(X) g(mark(X)) => g(X) g(active(X)) => g(X) d(mark(X)) => d(X) d(active(X)) => d(X) h(mark(X)) => h(X) h(active(X)) => h(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(f(f(X))) >? mark(c(f(g(f(X))))) active(c(X)) >? mark(d(X)) active(h(X)) >? mark(c(d(X))) mark(f(X)) >? active(f(mark(X))) mark(c(X)) >? active(c(X)) mark(g(X)) >? active(g(X)) mark(d(X)) >? active(d(X)) mark(h(X)) >? active(h(mark(X))) f(mark(X)) >? f(X) f(active(X)) >? f(X) c(mark(X)) >? c(X) c(active(X)) >? c(X) g(mark(X)) >? g(X) g(active(X)) >? g(X) d(mark(X)) >? d(X) d(active(X)) >? d(X) h(mark(X)) >? h(X) h(active(X)) >? h(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: active = \y0.y0 c = \y0.y0 d = \y0.y0 f = \y0.y0 g = \y0.y0 h = \y0.1 + y0 mark = \y0.y0 Using this interpretation, the requirements translate to: [[active(f(f(_x0)))]] = x0 >= x0 = [[mark(c(f(g(f(_x0)))))]] [[active(c(_x0))]] = x0 >= x0 = [[mark(d(_x0))]] [[active(h(_x0))]] = 1 + x0 > x0 = [[mark(c(d(_x0)))]] [[mark(f(_x0))]] = x0 >= x0 = [[active(f(mark(_x0)))]] [[mark(c(_x0))]] = x0 >= x0 = [[active(c(_x0))]] [[mark(g(_x0))]] = x0 >= x0 = [[active(g(_x0))]] [[mark(d(_x0))]] = x0 >= x0 = [[active(d(_x0))]] [[mark(h(_x0))]] = 1 + x0 >= 1 + x0 = [[active(h(mark(_x0)))]] [[f(mark(_x0))]] = x0 >= x0 = [[f(_x0)]] [[f(active(_x0))]] = x0 >= x0 = [[f(_x0)]] [[c(mark(_x0))]] = x0 >= x0 = [[c(_x0)]] [[c(active(_x0))]] = x0 >= x0 = [[c(_x0)]] [[g(mark(_x0))]] = x0 >= x0 = [[g(_x0)]] [[g(active(_x0))]] = x0 >= x0 = [[g(_x0)]] [[d(mark(_x0))]] = x0 >= x0 = [[d(_x0)]] [[d(active(_x0))]] = x0 >= x0 = [[d(_x0)]] [[h(mark(_x0))]] = 1 + x0 >= 1 + x0 = [[h(_x0)]] [[h(active(_x0))]] = 1 + x0 >= 1 + x0 = [[h(_x0)]] We can thus remove the following rules: active(h(X)) => mark(c(d(X))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] active#(f(f(X))) =#> mark#(c(f(g(f(X))))) 1] active#(f(f(X))) =#> c#(f(g(f(X)))) 2] active#(f(f(X))) =#> f#(g(f(X))) 3] active#(f(f(X))) =#> g#(f(X)) 4] active#(f(f(X))) =#> f#(X) 5] active#(c(X)) =#> mark#(d(X)) 6] active#(c(X)) =#> d#(X) 7] mark#(f(X)) =#> active#(f(mark(X))) 8] mark#(f(X)) =#> f#(mark(X)) 9] mark#(f(X)) =#> mark#(X) 10] mark#(c(X)) =#> active#(c(X)) 11] mark#(c(X)) =#> c#(X) 12] mark#(g(X)) =#> active#(g(X)) 13] mark#(g(X)) =#> g#(X) 14] mark#(d(X)) =#> active#(d(X)) 15] mark#(d(X)) =#> d#(X) 16] mark#(h(X)) =#> active#(h(mark(X))) 17] mark#(h(X)) =#> h#(mark(X)) 18] mark#(h(X)) =#> mark#(X) 19] f#(mark(X)) =#> f#(X) 20] f#(active(X)) =#> f#(X) 21] c#(mark(X)) =#> c#(X) 22] c#(active(X)) =#> c#(X) 23] g#(mark(X)) =#> g#(X) 24] g#(active(X)) =#> g#(X) 25] d#(mark(X)) =#> d#(X) 26] d#(active(X)) =#> d#(X) 27] h#(mark(X)) =#> h#(X) 28] h#(active(X)) =#> h#(X) Rules R_0: active(f(f(X))) => mark(c(f(g(f(X))))) active(c(X)) => mark(d(X)) mark(f(X)) => active(f(mark(X))) mark(c(X)) => active(c(X)) mark(g(X)) => active(g(X)) mark(d(X)) => active(d(X)) mark(h(X)) => active(h(mark(X))) f(mark(X)) => f(X) f(active(X)) => f(X) c(mark(X)) => c(X) c(active(X)) => c(X) g(mark(X)) => g(X) g(active(X)) => g(X) d(mark(X)) => d(X) d(active(X)) => d(X) h(mark(X)) => h(X) h(active(X)) => h(X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 10, 11 * 1 : * 2 : * 3 : * 4 : 19, 20 * 5 : 14, 15 * 6 : 25, 26 * 7 : 0, 1, 2, 3, 4 * 8 : 19, 20 * 9 : 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 * 10 : 5, 6 * 11 : 21, 22 * 12 : * 13 : 23, 24 * 14 : * 15 : 25, 26 * 16 : * 17 : 27, 28 * 18 : 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 * 19 : 19, 20 * 20 : 19, 20 * 21 : 21, 22 * 22 : 21, 22 * 23 : 23, 24 * 24 : 23, 24 * 25 : 25, 26 * 26 : 25, 26 * 27 : 27, 28 * 28 : 27, 28 This graph has the following strongly connected components: P_1: mark#(f(X)) =#> mark#(X) mark#(h(X)) =#> mark#(X) P_2: f#(mark(X)) =#> f#(X) f#(active(X)) =#> f#(X) P_3: c#(mark(X)) =#> c#(X) c#(active(X)) =#> c#(X) P_4: g#(mark(X)) =#> g#(X) g#(active(X)) =#> g#(X) P_5: d#(mark(X)) =#> d#(X) d#(active(X)) =#> d#(X) P_6: h#(mark(X)) =#> h#(X) h#(active(X)) =#> h#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f), (P_4, R_0, m, f), (P_5, R_0, m, f) and (P_6, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative) and (P_6, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(h#) = 1 Thus, we can orient the dependency pairs as follows: nu(h#(mark(X))) = mark(X) |> X = nu(h#(X)) nu(h#(active(X))) = active(X) |> X = nu(h#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_6, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative) and (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(d#) = 1 Thus, we can orient the dependency pairs as follows: nu(d#(mark(X))) = mark(X) |> X = nu(d#(X)) nu(d#(active(X))) = active(X) |> X = nu(d#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(g#) = 1 Thus, we can orient the dependency pairs as follows: nu(g#(mark(X))) = mark(X) |> X = nu(g#(X)) nu(g#(active(X))) = active(X) |> X = nu(g#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_4, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(c#) = 1 Thus, we can orient the dependency pairs as follows: nu(c#(mark(X))) = mark(X) |> X = nu(c#(X)) nu(c#(active(X))) = active(X) |> X = nu(c#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(f#) = 1 Thus, we can orient the dependency pairs as follows: nu(f#(mark(X))) = mark(X) |> X = nu(f#(X)) nu(f#(active(X))) = active(X) |> X = nu(f#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(f(X))) = f(X) |> X = nu(mark#(X)) nu(mark#(h(X))) = h(X) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.