/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 2nd : [o] --> o activate : [o] --> o cons : [o * o] --> o from : [o] --> o n!6220!6220cons : [o * o] --> o n!6220!6220from : [o] --> o s : [o] --> o 2nd(cons(X, n!6220!6220cons(Y, Z))) => activate(Y) from(X) => cons(X, n!6220!6220from(s(X))) cons(X, Y) => n!6220!6220cons(X, Y) from(X) => n!6220!6220from(X) activate(n!6220!6220cons(X, Y)) => cons(X, Y) activate(n!6220!6220from(X)) => from(X) activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): 2nd(cons(X, n!6220!6220cons(Y, Z))) >? activate(Y) from(X) >? cons(X, n!6220!6220from(s(X))) cons(X, Y) >? n!6220!6220cons(X, Y) from(X) >? n!6220!6220from(X) activate(n!6220!6220cons(X, Y)) >? cons(X, Y) activate(n!6220!6220from(X)) >? from(X) activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 2nd = \y0.3 + 3y0 activate = \y0.2 + 2y0 cons = \y0y1.y0 + y1 from = \y0.2 + 2y0 n!6220!6220cons = \y0y1.y0 + y1 n!6220!6220from = \y0.y0 s = \y0.y0 Using this interpretation, the requirements translate to: [[2nd(cons(_x0, n!6220!6220cons(_x1, _x2)))]] = 3 + 3x0 + 3x1 + 3x2 > 2 + 2x1 = [[activate(_x1)]] [[from(_x0)]] = 2 + 2x0 > 2x0 = [[cons(_x0, n!6220!6220from(s(_x0)))]] [[cons(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[n!6220!6220cons(_x0, _x1)]] [[from(_x0)]] = 2 + 2x0 > x0 = [[n!6220!6220from(_x0)]] [[activate(n!6220!6220cons(_x0, _x1))]] = 2 + 2x0 + 2x1 > x0 + x1 = [[cons(_x0, _x1)]] [[activate(n!6220!6220from(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[from(_x0)]] [[activate(_x0)]] = 2 + 2x0 > x0 = [[_x0]] We can thus remove the following rules: 2nd(cons(X, n!6220!6220cons(Y, Z))) => activate(Y) from(X) => cons(X, n!6220!6220from(s(X))) from(X) => n!6220!6220from(X) activate(n!6220!6220cons(X, Y)) => cons(X, Y) activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): cons(X, Y) >? n!6220!6220cons(X, Y) activate(n!6220!6220from(X)) >? from(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.3 + y0 cons = \y0y1.3 + y0 + y1 from = \y0.y0 n!6220!6220cons = \y0y1.y0 + y1 n!6220!6220from = \y0.3 + y0 Using this interpretation, the requirements translate to: [[cons(_x0, _x1)]] = 3 + x0 + x1 > x0 + x1 = [[n!6220!6220cons(_x0, _x1)]] [[activate(n!6220!6220from(_x0))]] = 6 + x0 > x0 = [[from(_x0)]] We can thus remove the following rules: cons(X, Y) => n!6220!6220cons(X, Y) activate(n!6220!6220from(X)) => from(X) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.