/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) QDPOrderProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 17 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 14 ms] (36) QDP (37) QDPOrderProof [EQUIVALENT, 21 ms] (38) QDP (39) QDPOrderProof [EQUIVALENT, 60 ms] (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (44) QDP (45) DependencyGraphProof [EQUIVALENT, 0 ms] (46) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(0, Y)) -> MARK(0) ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) ACTIVE(minus(s(X), s(Y))) -> MINUS(X, Y) ACTIVE(geq(X, 0)) -> MARK(true) ACTIVE(geq(0, s(Y))) -> MARK(false) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) ACTIVE(geq(s(X), s(Y))) -> GEQ(X, Y) ACTIVE(div(0, s(Y))) -> MARK(0) ACTIVE(div(s(X), s(Y))) -> MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) ACTIVE(div(s(X), s(Y))) -> IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) ACTIVE(div(s(X), s(Y))) -> GEQ(X, Y) ACTIVE(div(s(X), s(Y))) -> S(div(minus(X, Y), s(Y))) ACTIVE(div(s(X), s(Y))) -> DIV(minus(X, Y), s(Y)) ACTIVE(div(s(X), s(Y))) -> MINUS(X, Y) ACTIVE(if(true, X, Y)) -> MARK(X) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) MARK(0) -> ACTIVE(0) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) MARK(true) -> ACTIVE(true) MARK(false) -> ACTIVE(false) MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) MARK(div(X1, X2)) -> DIV(mark(X1), X2) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> IF(mark(X1), X2, X3) MARK(if(X1, X2, X3)) -> MARK(X1) MINUS(mark(X1), X2) -> MINUS(X1, X2) MINUS(X1, mark(X2)) -> MINUS(X1, X2) MINUS(active(X1), X2) -> MINUS(X1, X2) MINUS(X1, active(X2)) -> MINUS(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) GEQ(mark(X1), X2) -> GEQ(X1, X2) GEQ(X1, mark(X2)) -> GEQ(X1, X2) GEQ(active(X1), X2) -> GEQ(X1, X2) GEQ(X1, active(X2)) -> GEQ(X1, X2) DIV(mark(X1), X2) -> DIV(X1, X2) DIV(X1, mark(X2)) -> DIV(X1, X2) DIV(active(X1), X2) -> DIV(X1, X2) DIV(X1, active(X2)) -> DIV(X1, X2) IF(mark(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, mark(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) IF(active(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, active(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, active(X3)) -> IF(X1, X2, X3) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 17 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: IF(X1, mark(X2), X3) -> IF(X1, X2, X3) IF(mark(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) IF(active(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, active(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, active(X3)) -> IF(X1, X2, X3) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: IF(X1, mark(X2), X3) -> IF(X1, X2, X3) IF(mark(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) IF(active(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, active(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, active(X3)) -> IF(X1, X2, X3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *IF(X1, mark(X2), X3) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *IF(mark(X1), X2, X3) -> IF(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 *IF(active(X1), X2, X3) -> IF(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *IF(X1, active(X2), X3) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *IF(X1, X2, active(X3)) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(X1, mark(X2)) -> DIV(X1, X2) DIV(mark(X1), X2) -> DIV(X1, X2) DIV(active(X1), X2) -> DIV(X1, X2) DIV(X1, active(X2)) -> DIV(X1, X2) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(X1, mark(X2)) -> DIV(X1, X2) DIV(mark(X1), X2) -> DIV(X1, X2) DIV(active(X1), X2) -> DIV(X1, X2) DIV(X1, active(X2)) -> DIV(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DIV(X1, mark(X2)) -> DIV(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *DIV(mark(X1), X2) -> DIV(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *DIV(active(X1), X2) -> DIV(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *DIV(X1, active(X2)) -> DIV(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: GEQ(X1, mark(X2)) -> GEQ(X1, X2) GEQ(mark(X1), X2) -> GEQ(X1, X2) GEQ(active(X1), X2) -> GEQ(X1, X2) GEQ(X1, active(X2)) -> GEQ(X1, X2) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: GEQ(X1, mark(X2)) -> GEQ(X1, X2) GEQ(mark(X1), X2) -> GEQ(X1, X2) GEQ(active(X1), X2) -> GEQ(X1, X2) GEQ(X1, active(X2)) -> GEQ(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GEQ(X1, mark(X2)) -> GEQ(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *GEQ(mark(X1), X2) -> GEQ(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *GEQ(active(X1), X2) -> GEQ(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *GEQ(X1, active(X2)) -> GEQ(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(X1, mark(X2)) -> MINUS(X1, X2) MINUS(mark(X1), X2) -> MINUS(X1, X2) MINUS(active(X1), X2) -> MINUS(X1, X2) MINUS(X1, active(X2)) -> MINUS(X1, X2) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(X1, mark(X2)) -> MINUS(X1, X2) MINUS(mark(X1), X2) -> MINUS(X1, X2) MINUS(active(X1), X2) -> MINUS(X1, X2) MINUS(X1, active(X2)) -> MINUS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(X1, mark(X2)) -> MINUS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *MINUS(mark(X1), X2) -> MINUS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *MINUS(active(X1), X2) -> MINUS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *MINUS(X1, active(X2)) -> MINUS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) MARK(s(X)) -> ACTIVE(s(mark(X))) ACTIVE(div(s(X), s(Y))) -> MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) MARK(s(X)) -> MARK(X) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(div(x_1, x_2)) = 1 POL(false) = 0 POL(geq(x_1, x_2)) = 1 POL(if(x_1, x_2, x_3)) = 1 POL(mark(x_1)) = 0 POL(minus(x_1, x_2)) = 1 POL(s(x_1)) = 0 POL(true) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) div(X1, mark(X2)) -> div(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) ACTIVE(div(s(X), s(Y))) -> MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) MARK(s(X)) -> MARK(X) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(div(x_1, x_2)) = x_1 + x_2 POL(false) = 0 POL(geq(x_1, x_2)) = 0 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(minus(x_1, x_2)) = 0 POL(s(x_1)) = 1 + x_1 POL(true) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) div(X1, mark(X2)) -> div(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) mark(minus(X1, X2)) -> active(minus(X1, X2)) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) mark(s(X)) -> active(s(mark(X))) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) mark(geq(X1, X2)) -> active(geq(X1, X2)) active(if(true, X, Y)) -> mark(X) mark(div(X1, X2)) -> active(div(mark(X1), X2)) active(if(false, X, Y)) -> mark(Y) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(0) -> active(0) mark(true) -> active(true) mark(false) -> active(false) active(minus(0, Y)) -> mark(0) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(div(0, s(Y))) -> mark(0) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) ACTIVE(div(s(X), s(Y))) -> MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(div(s(X), s(Y))) -> MARK(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) MARK(div(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(div(x_1, x_2)) = 1 + x_1 POL(false) = 0 POL(geq(x_1, x_2)) = 0 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(minus(x_1, x_2)) = 0 POL(s(x_1)) = 0 POL(true) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) div(X1, mark(X2)) -> div(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) mark(minus(X1, X2)) -> active(minus(X1, X2)) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) mark(s(X)) -> active(s(mark(X))) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) mark(geq(X1, X2)) -> active(geq(X1, X2)) active(if(true, X, Y)) -> mark(X) mark(div(X1, X2)) -> active(div(mark(X1), X2)) active(if(false, X, Y)) -> mark(Y) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(0) -> active(0) mark(true) -> active(true) mark(false) -> active(false) active(minus(0, Y)) -> mark(0) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(div(0, s(Y))) -> mark(0) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(if(true, X, Y)) -> MARK(X) ACTIVE(if(false, X, Y)) -> MARK(Y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(div(x_1, x_2)) = 1 POL(false) = 1 POL(geq(x_1, x_2)) = 1 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(minus(x_1, x_2)) = 0 POL(s(x_1)) = 0 POL(true) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) mark(minus(X1, X2)) -> active(minus(X1, X2)) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) mark(s(X)) -> active(s(mark(X))) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) mark(geq(X1, X2)) -> active(geq(X1, X2)) active(if(true, X, Y)) -> mark(X) mark(div(X1, X2)) -> active(div(mark(X1), X2)) active(if(false, X, Y)) -> mark(Y) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(0) -> active(0) mark(true) -> active(true) mark(false) -> active(false) div(X1, mark(X2)) -> div(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) active(minus(0, Y)) -> mark(0) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(div(0, s(Y))) -> mark(0) s(active(X)) -> s(X) s(mark(X)) -> s(X) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(div(X1, X2)) -> ACTIVE(div(mark(X1), X2)) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = 1 POL( MARK_1(x_1) ) = x_1 + 1 POL( minus_2(x_1, x_2) ) = 0 POL( mark_1(x_1) ) = max{0, -2} POL( active_1(x_1) ) = 2x_1 + 1 POL( geq_2(x_1, x_2) ) = 0 POL( div_2(x_1, x_2) ) = 2x_2 + 1 POL( if_3(x_1, ..., x_3) ) = x_1 + 2x_2 + 2x_3 + 2 POL( s_1(x_1) ) = 1 POL( 0 ) = 2 POL( true ) = 2 POL( false ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) mark(minus(X1, X2)) -> active(minus(X1, X2)) mark(0) -> active(0) mark(s(X)) -> active(s(mark(X))) mark(geq(X1, X2)) -> active(geq(X1, X2)) mark(true) -> active(true) mark(false) -> active(false) mark(div(X1, X2)) -> active(div(mark(X1), X2)) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) minus(mark(X1), X2) -> minus(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) geq(mark(X1), X2) -> geq(X1, X2) geq(X1, mark(X2)) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) div(mark(X1), X2) -> div(X1, X2) div(X1, mark(X2)) -> div(X1, X2) div(active(X1), X2) -> div(X1, X2) div(X1, active(X2)) -> div(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) The TRS R consists of the following rules: geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: ACTIVE(minus(s(X), s(Y))) -> MARK(minus(X, Y)) ACTIVE(geq(s(X), s(Y))) -> MARK(geq(X, Y)) MARK(geq(X1, X2)) -> ACTIVE(geq(X1, X2)) The following rules are removed from R: geq(X1, mark(X2)) -> geq(X1, X2) geq(mark(X1), X2) -> geq(X1, X2) geq(active(X1), X2) -> geq(X1, X2) geq(X1, active(X2)) -> geq(X1, X2) minus(X1, mark(X2)) -> minus(X1, X2) minus(mark(X1), X2) -> minus(X1, X2) minus(active(X1), X2) -> minus(X1, X2) minus(X1, active(X2)) -> minus(X1, X2) Used ordering: POLO with Polynomial interpretation [POLO]: POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 2*x_1 POL(active(x_1)) = 2*x_1 POL(geq(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(mark(x_1)) = 2*x_1 POL(minus(x_1, x_2)) = x_1 + 2*x_2 POL(s(x_1)) = 2 + 2*x_1 ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(minus(X1, X2)) -> ACTIVE(minus(X1, X2)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (46) TRUE