/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. activate : [o] --> o c : [] --> o f : [o] --> o false : [] --> o if : [o * o * o] --> o n!6220!6220f : [o] --> o n!6220!6220true : [] --> o true : [] --> o f(X) => if(X, c, n!6220!6220f(n!6220!6220true)) if(true, X, Y) => X if(false, X, Y) => activate(Y) f(X) => n!6220!6220f(X) true => n!6220!6220true activate(n!6220!6220f(X)) => f(activate(X)) activate(n!6220!6220true) => true activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(X) >? if(X, c, n!6220!6220f(n!6220!6220true)) if(true, X, Y) >? X if(false, X, Y) >? activate(Y) f(X) >? n!6220!6220f(X) true >? n!6220!6220true activate(n!6220!6220f(X)) >? f(activate(X)) activate(n!6220!6220true) >? true activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.2y0 c = 0 f = \y0.y0 false = 3 if = \y0y1y2.y0 + y1 + 2y2 n!6220!6220f = \y0.y0 n!6220!6220true = 0 true = 0 Using this interpretation, the requirements translate to: [[f(_x0)]] = x0 >= x0 = [[if(_x0, c, n!6220!6220f(n!6220!6220true))]] [[if(true, _x0, _x1)]] = x0 + 2x1 >= x0 = [[_x0]] [[if(false, _x0, _x1)]] = 3 + x0 + 2x1 > 2x1 = [[activate(_x1)]] [[f(_x0)]] = x0 >= x0 = [[n!6220!6220f(_x0)]] [[true]] = 0 >= 0 = [[n!6220!6220true]] [[activate(n!6220!6220f(_x0))]] = 2x0 >= 2x0 = [[f(activate(_x0))]] [[activate(n!6220!6220true)]] = 0 >= 0 = [[true]] [[activate(_x0)]] = 2x0 >= x0 = [[_x0]] We can thus remove the following rules: if(false, X, Y) => activate(Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(X) >? if(X, c, n!6220!6220f(n!6220!6220true)) if(true, X, Y) >? X f(X) >? n!6220!6220f(X) true >? n!6220!6220true activate(n!6220!6220f(X)) >? f(activate(X)) activate(n!6220!6220true) >? true activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.1 + y0 c = 0 f = \y0.y0 if = \y0y1y2.y0 + y1 + y2 n!6220!6220f = \y0.y0 n!6220!6220true = 0 true = 1 Using this interpretation, the requirements translate to: [[f(_x0)]] = x0 >= x0 = [[if(_x0, c, n!6220!6220f(n!6220!6220true))]] [[if(true, _x0, _x1)]] = 1 + x0 + x1 > x0 = [[_x0]] [[f(_x0)]] = x0 >= x0 = [[n!6220!6220f(_x0)]] [[true]] = 1 > 0 = [[n!6220!6220true]] [[activate(n!6220!6220f(_x0))]] = 1 + x0 >= 1 + x0 = [[f(activate(_x0))]] [[activate(n!6220!6220true)]] = 1 >= 1 = [[true]] [[activate(_x0)]] = 1 + x0 > x0 = [[_x0]] We can thus remove the following rules: if(true, X, Y) => X true => n!6220!6220true activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(X) >? if(X, c, n!6220!6220f(n!6220!6220true)) f(X) >? n!6220!6220f(X) activate(n!6220!6220f(X)) >? f(activate(X)) activate(n!6220!6220true) >? true We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.1 + 3y0 c = 0 f = \y0.2 + y0 if = \y0y1y2.y0 + y1 + y2 n!6220!6220f = \y0.1 + y0 n!6220!6220true = 0 true = 0 Using this interpretation, the requirements translate to: [[f(_x0)]] = 2 + x0 > 1 + x0 = [[if(_x0, c, n!6220!6220f(n!6220!6220true))]] [[f(_x0)]] = 2 + x0 > 1 + x0 = [[n!6220!6220f(_x0)]] [[activate(n!6220!6220f(_x0))]] = 4 + 3x0 > 3 + 3x0 = [[f(activate(_x0))]] [[activate(n!6220!6220true)]] = 1 > 0 = [[true]] We can thus remove the following rules: f(X) => if(X, c, n!6220!6220f(n!6220!6220true)) f(X) => n!6220!6220f(X) activate(n!6220!6220f(X)) => f(activate(X)) activate(n!6220!6220true) => true All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.