/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) MNOCProof [EQUIVALENT, 0 ms] (9) QDP (10) MRRProof [EQUIVALENT, 0 ms] (11) QDP (12) PisEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) MNOCProof [EQUIVALENT, 0 ms] (18) QDP (19) MRRProof [EQUIVALENT, 7 ms] (20) QDP (21) PisEmptyProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) QDPOrderProof [EQUIVALENT, 0 ms] (25) QDP (26) PisEmptyProof [EQUIVALENT, 0 ms] (27) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__0, Y) -> 0^1 MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) DIV(s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> DIV(minus(X, activate(Y)), n__s(activate(Y))) DIV(s(X), n__s(Y)) -> MINUS(X, activate(Y)) IF(true, X, Y) -> ACTIVATE(X) IF(false, X, Y) -> ACTIVATE(Y) ACTIVATE(n__0) -> 0^1 ACTIVATE(n__s(X)) -> S(X) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 13 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) The TRS R consists of the following rules: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X s(X) -> n__s(X) 0 -> n__0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) The TRS R consists of the following rules: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X s(X) -> n__s(X) 0 -> n__0 The set Q consists of the following terms: activate(x0) s(x0) 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) Strictly oriented rules of the TRS R: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X s(X) -> n__s(X) 0 -> n__0 Used ordering: Knuth-Bendix order [KBO] with precedence:GEQ_2 > s_1 > n__s_1 > 0 > activate_1 > n__0 and weight map: n__0=1 0=1 activate_1=1 n__s_1=1 s_1=1 GEQ_2=0 The variable weight is 1 ---------------------------------------- (11) Obligation: Q DP problem: P is empty. R is empty. The set Q consists of the following terms: activate(x0) s(x0) 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) The TRS R consists of the following rules: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X s(X) -> n__s(X) 0 -> n__0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) The TRS R consists of the following rules: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X s(X) -> n__s(X) 0 -> n__0 The set Q consists of the following terms: activate(x0) s(x0) 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) Strictly oriented rules of the TRS R: activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X s(X) -> n__s(X) 0 -> n__0 Used ordering: Knuth-Bendix order [KBO] with precedence:MINUS_2 > s_1 > n__s_1 > 0 > activate_1 > n__0 and weight map: n__0=1 0=1 activate_1=1 n__s_1=1 s_1=1 MINUS_2=0 The variable weight is 1 ---------------------------------------- (20) Obligation: Q DP problem: P is empty. R is empty. The set Q consists of the following terms: activate(x0) s(x0) 0 We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(s(X), n__s(Y)) -> DIV(minus(X, activate(Y)), n__s(activate(Y))) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. DIV(s(X), n__s(Y)) -> DIV(minus(X, activate(Y)), n__s(activate(Y))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. DIV(x1, x2) = DIV(x1) s(x1) = s n__s(x1) = x1 minus(x1, x2) = minus activate(x1) = activate n__0 = n__0 0 = 0 Recursive path order with status [RPO]. Quasi-Precedence: [DIV_1, s, activate] > [minus, 0] > n__0 Status: DIV_1: [1] s: [] minus: [] activate: multiset status n__0: multiset status 0: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 0 -> n__0 ---------------------------------------- (25) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(div(minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (27) YES