/export/starexec/sandbox2/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Proof: DP Processor: DPs: terms#(N) -> s#(N) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) dbl#(s(X)) -> activate#(X) dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) add#(s(X),Y) -> activate#(X) add#(s(X),Y) -> s#(n__add(activate(X),Y)) first#(s(X),cons(Y,Z)) -> activate#(Z) first#(s(X),cons(Y,Z)) -> activate#(X) activate#(n__terms(X)) -> terms#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) activate#(n__s(X)) -> s#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X TDG Processor: DPs: terms#(N) -> s#(N) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) dbl#(s(X)) -> activate#(X) dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) add#(s(X),Y) -> activate#(X) add#(s(X),Y) -> s#(n__add(activate(X),Y)) first#(s(X),cons(Y,Z)) -> activate#(Z) first#(s(X),cons(Y,Z)) -> activate#(X) activate#(n__terms(X)) -> terms#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) activate#(n__s(X)) -> s#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X graph: first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__first(X1,X2)) -> first#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__dbl(X)) -> dbl#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__s(X)) -> s#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__add(X1,X2)) -> add#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__terms(X)) -> terms#(X) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__s(X)) -> s#(X) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) add#(s(X),Y) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) add#(s(X),Y) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) add#(s(X),Y) -> activate#(X) -> activate#(n__s(X)) -> s#(X) add#(s(X),Y) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) -> first#(s(X),cons(Y,Z)) -> activate#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) -> first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__dbl(X)) -> dbl#(X) -> dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) activate#(n__dbl(X)) -> dbl#(X) -> dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) -> add#(s(X),Y) -> s#(n__add(activate(X),Y)) activate#(n__add(X1,X2)) -> add#(X1,X2) -> add#(s(X),Y) -> activate#(X) activate#(n__terms(X)) -> terms#(X) -> terms#(N) -> sqr#(N) activate#(n__terms(X)) -> terms#(X) -> terms#(N) -> s#(N) dbl#(s(X)) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) dbl#(s(X)) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) dbl#(s(X)) -> activate#(X) -> activate#(n__s(X)) -> s#(X) dbl#(s(X)) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) dbl#(s(X)) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) sqr#(s(X)) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) sqr#(s(X)) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) sqr#(s(X)) -> activate#(X) -> activate#(n__s(X)) -> s#(X) sqr#(s(X)) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) sqr#(s(X)) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) sqr#(s(X)) -> dbl#(activate(X)) -> dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) sqr#(s(X)) -> dbl#(activate(X)) -> dbl#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> sqr#(activate(X)) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> dbl#(activate(X)) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> sqr#(activate(X)) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> activate#(X) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> dbl#(activate(X)) SCC Processor: #sccs: 1 #rules: 12 #arcs: 43/289 DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(X) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Arctic Interpretation Processor: dimension: 1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [first#](x0, x1) = x0 + x1 + 0, [add#](x0, x1) = x0 + 1x1 + 0, [activate#](x0) = x0 + 0, [dbl#](x0) = x0 + 0, [sqr#](x0) = x0 + 0, [terms#](x0) = x0 + 0, [n__first](x0, x1) = 2x0 + 1x1 + 4, [nil] = 0, [first](x0, x1) = 2x0 + 1x1 + 4, [add](x0, x1) = x0 + 1x1 + 3, [n__s](x0) = x0, [n__dbl](x0) = 1x0 + 2, [n__add](x0, x1) = x0 + 1x1 + 3, [dbl](x0) = 1x0 + 2, [activate](x0) = x0 + 0, [0] = 3, [cons](x0, x1) = x1, [n__terms](x0) = 1x0, [s](x0) = x0, [recip](x0) = 2x0 + 0, [sqr](x0) = 2x0 + 2, [terms](x0) = 1x0 orientation: first#(s(X),cons(Y,Z)) = X + Z + 0 >= Z + 0 = activate#(Z) activate#(n__terms(X)) = 1X + 0 >= X + 0 = terms#(X) terms#(N) = N + 0 >= N + 0 = sqr#(N) sqr#(s(X)) = X + 0 >= X + 0 = dbl#(activate(X)) dbl#(s(X)) = X + 0 >= X + 0 = activate#(X) activate#(n__add(X1,X2)) = X1 + 1X2 + 3 >= X1 + 1X2 + 0 = add#(X1,X2) add#(s(X),Y) = X + 1Y + 0 >= X + 0 = activate#(X) activate#(n__dbl(X)) = 1X + 2 >= X + 0 = dbl#(X) activate#(n__first(X1,X2)) = 2X1 + 1X2 + 4 >= X1 + X2 + 0 = first#(X1,X2) first#(s(X),cons(Y,Z)) = X + Z + 0 >= X + 0 = activate#(X) sqr#(s(X)) = X + 0 >= X + 0 = activate#(X) sqr#(s(X)) = X + 0 >= X + 0 = sqr#(activate(X)) terms(N) = 1N >= 1N = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 5 >= 3 = 0() sqr(s(X)) = 2X + 2 >= 2X + 3 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 4 >= 3 = 0() dbl(s(X)) = 1X + 2 >= 1X + 2 = s(n__s(n__dbl(activate(X)))) add(0(),X) = 1X + 3 >= X = X add(s(X),Y) = X + 1Y + 3 >= X + 1Y + 3 = s(n__add(activate(X),Y)) first(0(),X) = 1X + 5 >= 0 = nil() first(s(X),cons(Y,Z)) = 2X + 1Z + 4 >= 2X + 1Z + 4 = cons(Y,n__first(activate(X),activate(Z))) terms(X) = 1X >= 1X = n__terms(X) add(X1,X2) = X1 + 1X2 + 3 >= X1 + 1X2 + 3 = n__add(X1,X2) s(X) = X >= X = n__s(X) dbl(X) = 1X + 2 >= 1X + 2 = n__dbl(X) first(X1,X2) = 2X1 + 1X2 + 4 >= 2X1 + 1X2 + 4 = n__first(X1,X2) activate(n__terms(X)) = 1X + 0 >= 1X = terms(X) activate(n__add(X1,X2)) = X1 + 1X2 + 3 >= X1 + 1X2 + 3 = add(X1,X2) activate(n__s(X)) = X + 0 >= X = s(X) activate(n__dbl(X)) = 1X + 2 >= 1X + 2 = dbl(X) activate(n__first(X1,X2)) = 2X1 + 1X2 + 4 >= 2X1 + 1X2 + 4 = first(X1,X2) activate(X) = X + 0 >= X = X problem: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) first#(s(X),cons(Y,Z)) -> activate#(X) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Restore Modifier: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) first#(s(X),cons(Y,Z)) -> activate#(X) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X SCC Processor: #sccs: 1 #rules: 8 #arcs: 32/100 DPs: activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Arctic Interpretation Processor: dimension: 1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [add#](x0, x1) = 5x0 + x1, [activate#](x0) = x0, [dbl#](x0) = x0 + 0, [sqr#](x0) = x0, [terms#](x0) = x0, [n__first](x0, x1) = x0 + x1, [nil] = 0, [first](x0, x1) = x0 + x1, [add](x0, x1) = 5x0 + x1 + 7, [n__s](x0) = x0, [n__dbl](x0) = x0, [n__add](x0, x1) = 5x0 + x1 + 7, [dbl](x0) = x0, [activate](x0) = x0 + 0, [0] = 0, [cons](x0, x1) = x1, [n__terms](x0) = x0 + 4, [s](x0) = x0 + 0, [recip](x0) = x0 + 0, [sqr](x0) = x0 + 2, [terms](x0) = x0 + 4 orientation: activate#(n__terms(X)) = X + 4 >= X = terms#(X) terms#(N) = N >= N = sqr#(N) sqr#(s(X)) = X + 0 >= X + 0 = dbl#(activate(X)) dbl#(s(X)) = X + 0 >= X = activate#(X) activate#(n__add(X1,X2)) = 5X1 + X2 + 7 >= 5X1 + X2 = add#(X1,X2) add#(s(X),Y) = 5X + Y + 5 >= X = activate#(X) sqr#(s(X)) = X + 0 >= X = activate#(X) sqr#(s(X)) = X + 0 >= X + 0 = sqr#(activate(X)) terms(N) = N + 4 >= N + 4 = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 2 >= 0 = 0() sqr(s(X)) = X + 2 >= 5X + 7 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 0 >= 0 = 0() dbl(s(X)) = X + 0 >= X + 0 = s(n__s(n__dbl(activate(X)))) add(0(),X) = X + 7 >= X = X add(s(X),Y) = 5X + Y + 7 >= 5X + Y + 7 = s(n__add(activate(X),Y)) first(0(),X) = X + 0 >= 0 = nil() first(s(X),cons(Y,Z)) = X + Z + 0 >= X + Z + 0 = cons(Y,n__first(activate(X),activate(Z))) terms(X) = X + 4 >= X + 4 = n__terms(X) add(X1,X2) = 5X1 + X2 + 7 >= 5X1 + X2 + 7 = n__add(X1,X2) s(X) = X + 0 >= X = n__s(X) dbl(X) = X >= X = n__dbl(X) first(X1,X2) = X1 + X2 >= X1 + X2 = n__first(X1,X2) activate(n__terms(X)) = X + 4 >= X + 4 = terms(X) activate(n__add(X1,X2)) = 5X1 + X2 + 7 >= 5X1 + X2 + 7 = add(X1,X2) activate(n__s(X)) = X + 0 >= X + 0 = s(X) activate(n__dbl(X)) = X + 0 >= X = dbl(X) activate(n__first(X1,X2)) = X1 + X2 + 0 >= X1 + X2 = first(X1,X2) activate(X) = X + 0 >= X = X problem: DPs: activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Restore Modifier: DPs: activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X SCC Processor: #sccs: 1 #rules: 6 #arcs: 15/49 DPs: activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Arctic Interpretation Processor: dimension: 1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [activate#](x0) = x0, [dbl#](x0) = x0, [sqr#](x0) = 1x0, [terms#](x0) = 1x0, [n__first](x0, x1) = x0 + 2x1, [nil] = 0, [first](x0, x1) = x0 + 2x1, [add](x0, x1) = 2x0 + 2x1 + 0, [n__s](x0) = x0, [n__dbl](x0) = 0, [n__add](x0, x1) = 2x0 + 2x1 + 0, [dbl](x0) = 0, [activate](x0) = x0, [0] = 0, [cons](x0, x1) = x0 + x1 + 0, [n__terms](x0) = 1x0 + 2, [s](x0) = x0, [recip](x0) = 0, [sqr](x0) = 0, [terms](x0) = 1x0 + 2 orientation: activate#(n__terms(X)) = 1X + 2 >= 1X = terms#(X) terms#(N) = 1N >= 1N = sqr#(N) sqr#(s(X)) = 1X >= X = dbl#(activate(X)) dbl#(s(X)) = X >= X = activate#(X) sqr#(s(X)) = 1X >= X = activate#(X) sqr#(s(X)) = 1X >= 1X = sqr#(activate(X)) terms(N) = 1N + 2 >= 1N + 2 = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 0 >= 0 = 0() sqr(s(X)) = 0 >= 2 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 0 >= 0 = 0() dbl(s(X)) = 0 >= 0 = s(n__s(n__dbl(activate(X)))) add(0(),X) = 2X + 2 >= X = X add(s(X),Y) = 2X + 2Y + 0 >= 2X + 2Y + 0 = s(n__add(activate(X),Y)) first(0(),X) = 2X + 0 >= 0 = nil() first(s(X),cons(Y,Z)) = X + 2Y + 2Z + 2 >= X + Y + 2Z + 0 = cons(Y,n__first(activate(X),activate(Z))) terms(X) = 1X + 2 >= 1X + 2 = n__terms(X) add(X1,X2) = 2X1 + 2X2 + 0 >= 2X1 + 2X2 + 0 = n__add(X1,X2) s(X) = X >= X = n__s(X) dbl(X) = 0 >= 0 = n__dbl(X) first(X1,X2) = X1 + 2X2 >= X1 + 2X2 = n__first(X1,X2) activate(n__terms(X)) = 1X + 2 >= 1X + 2 = terms(X) activate(n__add(X1,X2)) = 2X1 + 2X2 + 0 >= 2X1 + 2X2 + 0 = add(X1,X2) activate(n__s(X)) = X >= X = s(X) activate(n__dbl(X)) = 0 >= 0 = dbl(X) activate(n__first(X1,X2)) = X1 + 2X2 >= X1 + 2X2 = first(X1,X2) activate(X) = X >= X = X problem: DPs: activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) dbl#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Restore Modifier: DPs: activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) dbl#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X SCC Processor: #sccs: 1 #rules: 1 #arcs: 10/16 DPs: sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [sqr#](x0) = x0, [n__first](x0, x1) = 5x0 + 3, [nil] = 3, [first](x0, x1) = 5x0 + 3, [add](x0, x1) = 4x0 + 2x1, [n__s](x0) = x0 + 1, [n__dbl](x0) = 2x0, [n__add](x0, x1) = 4x0 + 2x1, [dbl](x0) = 2x0, [activate](x0) = x0, [0] = 0, [cons](x0, x1) = 0, [n__terms](x0) = 0, [s](x0) = x0 + 1, [recip](x0) = 0, [sqr](x0) = 4x0, [terms](x0) = 0 orientation: sqr#(s(X)) = X + 1 >= X = sqr#(activate(X)) terms(N) = 0 >= 0 = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 0 >= 0 = 0() sqr(s(X)) = 4X + 4 >= 20X + 1 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 0 >= 0 = 0() dbl(s(X)) = 2X + 2 >= 2X + 2 = s(n__s(n__dbl(activate(X)))) add(0(),X) = 2X >= X = X add(s(X),Y) = 4X + 2Y + 4 >= 4X + 2Y + 1 = s(n__add(activate(X),Y)) first(0(),X) = 3 >= 3 = nil() first(s(X),cons(Y,Z)) = 5X + 8 >= 0 = cons(Y,n__first(activate(X),activate(Z))) terms(X) = 0 >= 0 = n__terms(X) add(X1,X2) = 4X1 + 2X2 >= 4X1 + 2X2 = n__add(X1,X2) s(X) = X + 1 >= X + 1 = n__s(X) dbl(X) = 2X >= 2X = n__dbl(X) first(X1,X2) = 5X1 + 3 >= 5X1 + 3 = n__first(X1,X2) activate(n__terms(X)) = 0 >= 0 = terms(X) activate(n__add(X1,X2)) = 4X1 + 2X2 >= 4X1 + 2X2 = add(X1,X2) activate(n__s(X)) = X + 1 >= X + 1 = s(X) activate(n__dbl(X)) = 2X >= 2X = dbl(X) activate(n__first(X1,X2)) = 5X1 + 3 >= 5X1 + 3 = first(X1,X2) activate(X) = X >= X = X problem: DPs: TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Qed