/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- Error at 1: Unexpected token '>=', 'benchmark' expected. syntax error rm: cannot remove ‘/tmp/muTerm1804289383846930886.in.dec’: Operation not permitted rm: cannot remove ‘/tmp/muTerm1804289383846930886.in.form’: Operation not permitted Error at 1: Unexpected token '>=', 'benchmark' expected. syntax error rm: cannot remove ‘/tmp/muTerm1957747793424238335.in.dec’: Operation not permitted rm: cannot remove ‘/tmp/muTerm1957747793424238335.in.form’: Operation not permitted YES Problem 1: (VAR N X X1 X2 Y Z) (RULES activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__terms(X)) -> TERMS(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> S(n__add(activate(X),Y)) DBL(s(X)) -> ACTIVATE(X) DBL(s(X)) -> S(n__s(n__dbl(activate(X)))) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> S(n__add(sqr(activate(X)),dbl(activate(X)))) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> S(N) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__s(X)) -> S(X) ACTIVATE(n__terms(X)) -> TERMS(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> S(n__add(activate(X),Y)) DBL(s(X)) -> ACTIVATE(X) DBL(s(X)) -> S(n__s(n__dbl(activate(X)))) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> S(n__add(sqr(activate(X)),dbl(activate(X)))) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> S(N) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) ADD(s(X),Y) -> ACTIVATE(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(X1,X2) ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) ADD(s(X),Y) -> ACTIVATE(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = X1 + X2 [dbl](X) = 2.X [first](X1,X2) = 2.X1 + 2.X2 + 2 [s](X) = X + 1/2 [sqr](X) = 2.X.X + 1 [terms](X) = 2.X + 2 [0] = 0 [cons](X1,X2) = 1/2.X2 [n__add](X1,X2) = X1 + X2 [n__dbl](X) = 2.X [n__first](X1,X2) = 2.X1 + 2.X2 + 2 [n__s](X) = X + 1/2 [n__terms](X) = 2.X + 2 [nil] = 0 [recip](X) = X.X + 2.X + 1/2 [ACTIVATE](X) = X + 1 [ADD](X1,X2) = X1 + 1/2 [DBL](X) = 2.X + 1 [FIRST](X1,X2) = X1 + 2.X2 + 2 [SQR](X) = 2.X [TERMS](X) = 2.X + 1 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) ADD(s(X),Y) -> ACTIVATE(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__dbl(X)) -> DBL(X) ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X + 2 [add](X1,X2) = X2 + 2 [dbl](X) = X + 2 [first](X1,X2) = 2.X1 + X2 + 2 [s](X) = X + 2 [sqr](X) = 2.X + 2 [terms](X) = X + 2 [0] = 0 [cons](X1,X2) = 2.X1 + X2 [n__add](X1,X2) = X2 [n__dbl](X) = X [n__first](X1,X2) = 2.X1 + X2 [n__s](X) = X [n__terms](X) = X [nil] = 1 [recip](X) = 0 [ACTIVATE](X) = 2.X + 2 [DBL](X) = 2.X + 1 [FIRST](X1,X2) = 2.X1 + 2.X2 + 2 [SQR](X) = 2.X + 1 [TERMS](X) = 2.X + 2 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(X1,X2) ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = 2.X + 2 [add](X1,X2) = 2.X2 + 2 [dbl](X) = 2 [first](X1,X2) = X1 + 2.X2 + 2 [s](X) = 2.X + 2 [sqr](X) = 2.X + 2 [terms](X) = 2.X + 2 [0] = 2 [cons](X1,X2) = X2 [n__add](X1,X2) = X2 [n__dbl](X) = 0 [n__first](X1,X2) = X1 + X2 [n__s](X) = X [n__terms](X) = X [nil] = 2 [recip](X) = 2.X + 2 [ACTIVATE](X) = 2.X + 2 [DBL](X) = X + 1 [FIRST](X1,X2) = X1 + 2.X2 + 1 [SQR](X) = 2.X + 2 [TERMS](X) = 2.X + 2 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__terms(X)) -> TERMS(X) DBL(s(X)) -> ACTIVATE(X) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X + 2 [add](X1,X2) = 2.X2 + 2 [dbl](X) = 2 [first](X1,X2) = 2.X1 + 2.X2 + 2 [s](X) = X + 2 [sqr](X) = 2.X + 2 [terms](X) = 2.X + 2 [0] = 2 [cons](X1,X2) = X1 [n__add](X1,X2) = 2.X2 [n__dbl](X) = 0 [n__first](X1,X2) = 2.X1 + 2.X2 [n__s](X) = X [n__terms](X) = 2.X + 2 [nil] = 1 [recip](X) = X [ACTIVATE](X) = 2.X [DBL](X) = 2.X + 2 [SQR](X) = 2.X + 2 [TERMS](X) = 2.X + 2 Problem 1: SCC Processor: -> Pairs: DBL(s(X)) -> ACTIVATE(X) SQR(s(X)) -> ACTIVATE(X) SQR(s(X)) -> DBL(activate(X)) SQR(s(X)) -> SQR(activate(X)) TERMS(N) -> SQR(N) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SQR(s(X)) -> SQR(activate(X)) ->->-> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Problem 1: Reduction Pair Processor: -> Pairs: SQR(s(X)) -> SQR(activate(X)) -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) -> Usable rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = X1 + X2 + 2 [dbl](X) = 2.X + 2 [first](X1,X2) = 2.X1.X2 + 2.X1 + 2.X2 + 2 [s](X) = X + 2 [sqr](X) = 2.X.X + 1 [terms](X) = 2 [0] = 2 [cons](X1,X2) = 2.X1 + 2 [n__add](X1,X2) = X1 + X2 + 2 [n__dbl](X) = 2.X + 2 [n__first](X1,X2) = 2.X1.X2 + 2.X1 + 2.X2 + 2 [n__s](X) = X + 2 [n__terms](X) = 2 [nil] = 2 [recip](X) = 0 [SQR](X) = 2.X.X + 2.X Problem 1: SCC Processor: -> Pairs: Empty -> Rules: activate(n__add(X1,X2)) -> add(X1,X2) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__s(X)) -> s(X) activate(n__terms(X)) -> terms(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) add(0,X) -> X add(X1,X2) -> n__add(X1,X2) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) dbl(0) -> 0 dbl(X) -> n__dbl(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) s(X) -> n__s(X) sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) sqr(0) -> 0 terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite.