/export/starexec/sandbox2/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Proof: Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [1] [activate](x0) = [0 1 0]x0 + [0] [0 0 1] [0], [1 1 0] [p](x0) = [1 0 0]x0 [0 1 0] , [1 1 0] [0] [s](x0) = [0 0 1]x0 + [1] [0 0 1] [0], [1 0 0] [1 0 0] [cons](x0, x1) = [0 0 0]x0 + [0 0 0]x1 [0 0 0] [0 0 0] , [1 0 0] [n__f](x0) = [0 0 0]x0 [0 1 1] , [1 1 0] [0] [n__s](x0) = [0 0 1]x0 + [1] [0 0 1] [0], [0] [n__0] = [0] [0], [1 1 0] [f](x0) = [0 0 0]x0 [0 1 1] , [0] [0] = [0] [0] orientation: [0] [0] f(0()) = [0] >= [0] = cons(0(),n__f(n__s(n__0()))) [0] [0] [1] [1] f(s(0())) = [0] >= [0] = f(p(s(0()))) [1] [1] [1 1 1] [1] p(s(X)) = [1 1 0]X + [0] >= X = X [0 0 1] [1] [1 1 0] [1 0 0] f(X) = [0 0 0]X >= [0 0 0]X = n__f(X) [0 1 1] [0 1 1] [1 1 0] [0] [1 1 0] [0] s(X) = [0 0 1]X + [1] >= [0 0 1]X + [1] = n__s(X) [0 0 1] [0] [0 0 1] [0] [0] [0] 0() = [0] >= [0] = n__0() [0] [0] [1 1 1] [1] [1 1 1] [1] activate(n__f(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = f(activate(X)) [0 1 1] [0] [0 1 1] [0] [1 1 1] [1] [1 1 1] [1] activate(n__s(X)) = [0 0 1]X + [1] >= [0 0 1]X + [1] = s(activate(X)) [0 0 1] [0] [0 0 1] [0] [1] [0] activate(n__0()) = [0] >= [0] = 0() [0] [0] [1 0 1] [1] activate(X) = [0 1 0]X + [0] >= X = X [0 0 1] [0] problem: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [0] [activate](x0) = [0 1 0]x0 + [0] [0 1 1] [1], [1 0 0] [p](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [s](x0) = [0 1 0]x0 [0 0 0] , [1 0 0] [1 0 0] [0] [cons](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [1] [0 0 0] [0 0 0] [0], [1 1 0] [n__f](x0) = [1 1 0]x0 [0 0 1] , [1 0 0] [n__s](x0) = [0 1 0]x0 [0 0 0] , [0] [n__0] = [0] [0], [1 1 0] [f](x0) = [1 1 0]x0 [1 0 1] , [0] [0] = [1] [0] orientation: [1] [0] f(0()) = [1] >= [1] = cons(0(),n__f(n__s(n__0()))) [0] [0] [1] [0] f(s(0())) = [1] >= [0] = f(p(s(0()))) [0] [0] [1 1 0] [1 1 0] f(X) = [1 1 0]X >= [1 1 0]X = n__f(X) [1 0 1] [0 0 1] [1 0 0] [1 0 0] s(X) = [0 1 0]X >= [0 1 0]X = n__s(X) [0 0 0] [0 0 0] [0] [0] 0() = [1] >= [0] = n__0() [0] [0] [1 1 0] [0] [1 1 0] [0] activate(n__f(X)) = [1 1 0]X + [0] >= [1 1 0]X + [0] = f(activate(X)) [1 1 1] [1] [1 1 1] [1] [1 0 0] [0] [1 0 0] activate(n__s(X)) = [0 1 0]X + [0] >= [0 1 0]X = s(activate(X)) [0 1 0] [1] [0 0 0] problem: f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [activate](x0) = [0 0 1]x0 [0 0 1] , [1 1 0] [s](x0) = [0 0 1]x0 [0 0 1] , [0] [n__f](x0) = x0 + [1] [1], [1 1 0] [n__s](x0) = [0 0 1]x0 [0 0 1] , [0] [n__0] = [0] [0], [1] [f](x0) = x0 + [1] [1], [0] [0] = [0] [0] orientation: [1] [0] f(X) = X + [1] >= X + [1] = n__f(X) [1] [1] [1 1 0] [1 1 0] s(X) = [0 0 1]X >= [0 0 1]X = n__s(X) [0 0 1] [0 0 1] [0] [0] 0() = [0] >= [0] = n__0() [0] [0] [1 1 0] [1] [1 1 0] [1] activate(n__f(X)) = [0 0 1]X + [1] >= [0 0 1]X + [1] = f(activate(X)) [0 0 1] [1] [0 0 1] [1] [1 1 1] [1 1 1] activate(n__s(X)) = [0 0 1]X >= [0 0 1]X = s(activate(X)) [0 0 1] [0 0 1] problem: s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [activate](x0) = [0 1 0]x0 [0 0 1] , [1] [s](x0) = x0 + [1] [0], [1 1 0] [n__f](x0) = [0 0 0]x0 [0 0 0] , [0] [n__s](x0) = x0 + [1] [0], [0] [n__0] = [0] [0], [1 0 0] [f](x0) = [0 0 0]x0 [0 0 0] , [0] [0] = [0] [0] orientation: [1] [0] s(X) = X + [1] >= X + [1] = n__s(X) [0] [0] [0] [0] 0() = [0] >= [0] = n__0() [0] [0] [1 1 0] [1 1 0] activate(n__f(X)) = [0 0 0]X >= [0 0 0]X = f(activate(X)) [0 0 0] [0 0 0] [1 1 0] [1] [1 1 0] [1] activate(n__s(X)) = [0 1 0]X + [1] >= [0 1 0]X + [1] = s(activate(X)) [0 0 1] [0] [0 0 1] [0] problem: 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [activate](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [s](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [1] [n__f](x0) = [0 0 0]x0 + [0] [0 0 0] [0], [1 0 0] [1] [n__s](x0) = [0 0 0]x0 + [0] [0 0 0] [0], [0] [n__0] = [0] [0], [1 0 0] [f](x0) = [0 0 0]x0 [0 0 0] , [0] [0] = [0] [0] orientation: [0] [0] 0() = [0] >= [0] = n__0() [0] [0] [1 0 0] [1] [1 0 0] activate(n__f(X)) = [0 0 0]X + [0] >= [0 0 0]X = f(activate(X)) [0 0 0] [0] [0 0 0] [1 0 0] [1] [1 0 0] activate(n__s(X)) = [0 0 0]X + [0] >= [0 0 0]X = s(activate(X)) [0 0 0] [0] [0 0 0] problem: 0() -> n__0() Matrix Interpretation Processor: dim=3 interpretation: [0] [n__0] = [0] [0], [1] [0] = [0] [1] orientation: [1] [0] 0() = [0] >= [0] = n__0() [1] [0] problem: Qed