/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 29 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES (13) QDP (14) QDPOrderProof [EQUIVALENT, 321 ms] (15) QDP (16) DependencyGraphProof [EQUIVALENT, 0 ms] (17) QDP (18) UsableRulesProof [EQUIVALENT, 0 ms] (19) QDP (20) QDPSizeChangeProof [EQUIVALENT, 0 ms] (21) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__U11(tt, V1, V2) -> A__U12(a__isNatKind(V1), V1, V2) A__U11(tt, V1, V2) -> A__ISNATKIND(V1) A__U12(tt, V1, V2) -> A__U13(a__isNatKind(V2), V1, V2) A__U12(tt, V1, V2) -> A__ISNATKIND(V2) A__U13(tt, V1, V2) -> A__U14(a__isNatKind(V2), V1, V2) A__U13(tt, V1, V2) -> A__ISNATKIND(V2) A__U14(tt, V1, V2) -> A__U15(a__isNat(V1), V2) A__U14(tt, V1, V2) -> A__ISNAT(V1) A__U15(tt, V2) -> A__U16(a__isNat(V2)) A__U15(tt, V2) -> A__ISNAT(V2) A__U21(tt, V1) -> A__U22(a__isNatKind(V1), V1) A__U21(tt, V1) -> A__ISNATKIND(V1) A__U22(tt, V1) -> A__U23(a__isNat(V1)) A__U22(tt, V1) -> A__ISNAT(V1) A__U31(tt, V2) -> A__U32(a__isNatKind(V2)) A__U31(tt, V2) -> A__ISNATKIND(V2) A__U51(tt, N) -> A__U52(a__isNatKind(N), N) A__U51(tt, N) -> A__ISNATKIND(N) A__U52(tt, N) -> MARK(N) A__U61(tt, M, N) -> A__U62(a__isNatKind(M), M, N) A__U61(tt, M, N) -> A__ISNATKIND(M) A__U62(tt, M, N) -> A__U63(a__isNat(N), M, N) A__U62(tt, M, N) -> A__ISNAT(N) A__U63(tt, M, N) -> A__U64(a__isNatKind(N), M, N) A__U63(tt, M, N) -> A__ISNATKIND(N) A__U64(tt, M, N) -> A__PLUS(mark(N), mark(M)) A__U64(tt, M, N) -> MARK(N) A__U64(tt, M, N) -> MARK(M) A__ISNAT(plus(V1, V2)) -> A__U11(a__isNatKind(V1), V1, V2) A__ISNAT(plus(V1, V2)) -> A__ISNATKIND(V1) A__ISNAT(s(V1)) -> A__U21(a__isNatKind(V1), V1) A__ISNAT(s(V1)) -> A__ISNATKIND(V1) A__ISNATKIND(plus(V1, V2)) -> A__U31(a__isNatKind(V1), V2) A__ISNATKIND(plus(V1, V2)) -> A__ISNATKIND(V1) A__ISNATKIND(s(V1)) -> A__U41(a__isNatKind(V1)) A__ISNATKIND(s(V1)) -> A__ISNATKIND(V1) A__PLUS(N, 0) -> A__U51(a__isNat(N), N) A__PLUS(N, 0) -> A__ISNAT(N) A__PLUS(N, s(M)) -> A__U61(a__isNat(M), M, N) A__PLUS(N, s(M)) -> A__ISNAT(M) MARK(U11(X1, X2, X3)) -> A__U11(mark(X1), X2, X3) MARK(U11(X1, X2, X3)) -> MARK(X1) MARK(U12(X1, X2, X3)) -> A__U12(mark(X1), X2, X3) MARK(U12(X1, X2, X3)) -> MARK(X1) MARK(isNatKind(X)) -> A__ISNATKIND(X) MARK(U13(X1, X2, X3)) -> A__U13(mark(X1), X2, X3) MARK(U13(X1, X2, X3)) -> MARK(X1) MARK(U14(X1, X2, X3)) -> A__U14(mark(X1), X2, X3) MARK(U14(X1, X2, X3)) -> MARK(X1) MARK(U15(X1, X2)) -> A__U15(mark(X1), X2) MARK(U15(X1, X2)) -> MARK(X1) MARK(isNat(X)) -> A__ISNAT(X) MARK(U16(X)) -> A__U16(mark(X)) MARK(U16(X)) -> MARK(X) MARK(U21(X1, X2)) -> A__U21(mark(X1), X2) MARK(U21(X1, X2)) -> MARK(X1) MARK(U22(X1, X2)) -> A__U22(mark(X1), X2) MARK(U22(X1, X2)) -> MARK(X1) MARK(U23(X)) -> A__U23(mark(X)) MARK(U23(X)) -> MARK(X) MARK(U31(X1, X2)) -> A__U31(mark(X1), X2) MARK(U31(X1, X2)) -> MARK(X1) MARK(U32(X)) -> A__U32(mark(X)) MARK(U32(X)) -> MARK(X) MARK(U41(X)) -> A__U41(mark(X)) MARK(U41(X)) -> MARK(X) MARK(U51(X1, X2)) -> A__U51(mark(X1), X2) MARK(U51(X1, X2)) -> MARK(X1) MARK(U52(X1, X2)) -> A__U52(mark(X1), X2) MARK(U52(X1, X2)) -> MARK(X1) MARK(U61(X1, X2, X3)) -> A__U61(mark(X1), X2, X3) MARK(U61(X1, X2, X3)) -> MARK(X1) MARK(U62(X1, X2, X3)) -> A__U62(mark(X1), X2, X3) MARK(U62(X1, X2, X3)) -> MARK(X1) MARK(U63(X1, X2, X3)) -> A__U63(mark(X1), X2, X3) MARK(U63(X1, X2, X3)) -> MARK(X1) MARK(U64(X1, X2, X3)) -> A__U64(mark(X1), X2, X3) MARK(U64(X1, X2, X3)) -> MARK(X1) MARK(plus(X1, X2)) -> A__PLUS(mark(X1), mark(X2)) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 30 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: A__U31(tt, V2) -> A__ISNATKIND(V2) A__ISNATKIND(plus(V1, V2)) -> A__U31(a__isNatKind(V1), V2) A__ISNATKIND(plus(V1, V2)) -> A__ISNATKIND(V1) A__ISNATKIND(s(V1)) -> A__ISNATKIND(V1) The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: A__U31(tt, V2) -> A__ISNATKIND(V2) A__ISNATKIND(plus(V1, V2)) -> A__U31(a__isNatKind(V1), V2) A__ISNATKIND(plus(V1, V2)) -> A__ISNATKIND(V1) A__ISNATKIND(s(V1)) -> A__ISNATKIND(V1) The TRS R consists of the following rules: a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__isNatKind(X) -> isNatKind(X) a__U41(tt) -> tt a__U41(X) -> U41(X) a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U31(X1, X2) -> U31(X1, X2) a__U32(tt) -> tt a__U32(X) -> U32(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__ISNATKIND(plus(V1, V2)) -> A__U31(a__isNatKind(V1), V2) The graph contains the following edges 1 > 2 *A__U31(tt, V2) -> A__ISNATKIND(V2) The graph contains the following edges 2 >= 1 *A__ISNATKIND(plus(V1, V2)) -> A__ISNATKIND(V1) The graph contains the following edges 1 > 1 *A__ISNATKIND(s(V1)) -> A__ISNATKIND(V1) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A__U12(tt, V1, V2) -> A__U13(a__isNatKind(V2), V1, V2) A__U13(tt, V1, V2) -> A__U14(a__isNatKind(V2), V1, V2) A__U14(tt, V1, V2) -> A__U15(a__isNat(V1), V2) A__U15(tt, V2) -> A__ISNAT(V2) A__ISNAT(plus(V1, V2)) -> A__U11(a__isNatKind(V1), V1, V2) A__U11(tt, V1, V2) -> A__U12(a__isNatKind(V1), V1, V2) A__ISNAT(s(V1)) -> A__U21(a__isNatKind(V1), V1) A__U21(tt, V1) -> A__U22(a__isNatKind(V1), V1) A__U22(tt, V1) -> A__ISNAT(V1) A__U14(tt, V1, V2) -> A__ISNAT(V1) The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__U13(tt, V1, V2) -> A__U14(a__isNatKind(V2), V1, V2) The graph contains the following edges 2 >= 2, 3 >= 3 *A__U11(tt, V1, V2) -> A__U12(a__isNatKind(V1), V1, V2) The graph contains the following edges 2 >= 2, 3 >= 3 *A__U12(tt, V1, V2) -> A__U13(a__isNatKind(V2), V1, V2) The graph contains the following edges 2 >= 2, 3 >= 3 *A__U15(tt, V2) -> A__ISNAT(V2) The graph contains the following edges 2 >= 1 *A__U14(tt, V1, V2) -> A__U15(a__isNat(V1), V2) The graph contains the following edges 3 >= 2 *A__U14(tt, V1, V2) -> A__ISNAT(V1) The graph contains the following edges 2 >= 1 *A__U22(tt, V1) -> A__ISNAT(V1) The graph contains the following edges 2 >= 1 *A__U21(tt, V1) -> A__U22(a__isNatKind(V1), V1) The graph contains the following edges 2 >= 2 *A__ISNAT(plus(V1, V2)) -> A__U11(a__isNatKind(V1), V1, V2) The graph contains the following edges 1 > 2, 1 > 3 *A__ISNAT(s(V1)) -> A__U21(a__isNatKind(V1), V1) The graph contains the following edges 1 > 2 ---------------------------------------- (12) YES ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U11(X1, X2, X3)) -> MARK(X1) MARK(U12(X1, X2, X3)) -> MARK(X1) MARK(U13(X1, X2, X3)) -> MARK(X1) MARK(U14(X1, X2, X3)) -> MARK(X1) MARK(U15(X1, X2)) -> MARK(X1) MARK(U16(X)) -> MARK(X) MARK(U21(X1, X2)) -> MARK(X1) MARK(U22(X1, X2)) -> MARK(X1) MARK(U23(X)) -> MARK(X) MARK(U31(X1, X2)) -> MARK(X1) MARK(U32(X)) -> MARK(X) MARK(U41(X)) -> MARK(X) MARK(U51(X1, X2)) -> A__U51(mark(X1), X2) A__U51(tt, N) -> A__U52(a__isNatKind(N), N) A__U52(tt, N) -> MARK(N) MARK(U51(X1, X2)) -> MARK(X1) MARK(U52(X1, X2)) -> A__U52(mark(X1), X2) MARK(U52(X1, X2)) -> MARK(X1) MARK(U61(X1, X2, X3)) -> A__U61(mark(X1), X2, X3) A__U61(tt, M, N) -> A__U62(a__isNatKind(M), M, N) A__U62(tt, M, N) -> A__U63(a__isNat(N), M, N) A__U63(tt, M, N) -> A__U64(a__isNatKind(N), M, N) A__U64(tt, M, N) -> A__PLUS(mark(N), mark(M)) A__PLUS(N, 0) -> A__U51(a__isNat(N), N) A__PLUS(N, s(M)) -> A__U61(a__isNat(M), M, N) A__U64(tt, M, N) -> MARK(N) MARK(U61(X1, X2, X3)) -> MARK(X1) MARK(U62(X1, X2, X3)) -> A__U62(mark(X1), X2, X3) MARK(U62(X1, X2, X3)) -> MARK(X1) MARK(U63(X1, X2, X3)) -> A__U63(mark(X1), X2, X3) MARK(U63(X1, X2, X3)) -> MARK(X1) MARK(U64(X1, X2, X3)) -> A__U64(mark(X1), X2, X3) A__U64(tt, M, N) -> MARK(M) MARK(U64(X1, X2, X3)) -> MARK(X1) MARK(plus(X1, X2)) -> A__PLUS(mark(X1), mark(X2)) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(U51(X1, X2)) -> A__U51(mark(X1), X2) A__U52(tt, N) -> MARK(N) MARK(U51(X1, X2)) -> MARK(X1) MARK(U52(X1, X2)) -> A__U52(mark(X1), X2) MARK(U52(X1, X2)) -> MARK(X1) MARK(U61(X1, X2, X3)) -> A__U61(mark(X1), X2, X3) A__U63(tt, M, N) -> A__U64(a__isNatKind(N), M, N) A__PLUS(N, 0) -> A__U51(a__isNat(N), N) A__PLUS(N, s(M)) -> A__U61(a__isNat(M), M, N) MARK(U61(X1, X2, X3)) -> MARK(X1) MARK(U62(X1, X2, X3)) -> A__U62(mark(X1), X2, X3) MARK(U62(X1, X2, X3)) -> MARK(X1) MARK(U63(X1, X2, X3)) -> A__U63(mark(X1), X2, X3) MARK(U63(X1, X2, X3)) -> MARK(X1) MARK(U64(X1, X2, X3)) -> A__U64(mark(X1), X2, X3) MARK(U64(X1, X2, X3)) -> MARK(X1) MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__PLUS_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( A__U51_2(x_1, x_2) ) = 2x_2 + 1 POL( A__U52_2(x_1, x_2) ) = 2x_2 + 1 POL( A__U61_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 1 POL( A__U62_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 1 POL( A__U63_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 1 POL( A__U64_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 POL( mark_1(x_1) ) = x_1 POL( U11_3(x_1, ..., x_3) ) = 2x_1 POL( a__U11_3(x_1, ..., x_3) ) = 2x_1 POL( U12_3(x_1, ..., x_3) ) = 2x_1 POL( a__U12_3(x_1, ..., x_3) ) = 2x_1 POL( isNatKind_1(x_1) ) = 0 POL( a__isNatKind_1(x_1) ) = 0 POL( U13_3(x_1, ..., x_3) ) = x_1 POL( a__U13_3(x_1, ..., x_3) ) = x_1 POL( U14_3(x_1, ..., x_3) ) = x_1 POL( a__U14_3(x_1, ..., x_3) ) = x_1 POL( U15_2(x_1, x_2) ) = 2x_1 POL( a__U15_2(x_1, x_2) ) = 2x_1 POL( isNat_1(x_1) ) = 0 POL( a__isNat_1(x_1) ) = 0 POL( U16_1(x_1) ) = 2x_1 POL( a__U16_1(x_1) ) = 2x_1 POL( U21_2(x_1, x_2) ) = x_1 POL( a__U21_2(x_1, x_2) ) = x_1 POL( U22_2(x_1, x_2) ) = 2x_1 POL( a__U22_2(x_1, x_2) ) = 2x_1 POL( U23_1(x_1) ) = x_1 POL( a__U23_1(x_1) ) = x_1 POL( U31_2(x_1, x_2) ) = x_1 POL( a__U31_2(x_1, x_2) ) = x_1 POL( U32_1(x_1) ) = x_1 POL( a__U32_1(x_1) ) = x_1 POL( U41_1(x_1) ) = x_1 POL( a__U41_1(x_1) ) = x_1 POL( U51_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( a__U51_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( tt ) = 0 POL( a__U52_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( U52_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( plus_2(x_1, x_2) ) = x_1 + 2x_2 POL( a__plus_2(x_1, x_2) ) = x_1 + 2x_2 POL( 0 ) = 1 POL( U61_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 1 POL( a__U61_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 1 POL( U62_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 1 POL( a__U62_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 1 POL( U63_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 1 POL( a__U63_3(x_1, ..., x_3) ) = x_1 + 2x_2 + x_3 + 1 POL( U64_3(x_1, ..., x_3) ) = 2x_1 + 2x_2 + x_3 + 1 POL( a__U64_3(x_1, ..., x_3) ) = 2x_1 + 2x_2 + x_3 + 1 POL( s_1(x_1) ) = x_1 + 1 POL( MARK_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) a__plus(N, 0) -> a__U51(a__isNat(N), N) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__isNatKind(X) -> isNatKind(X) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNat(X) -> isNat(X) a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U15(X1, X2) -> U15(X1, X2) a__U16(tt) -> tt a__U16(X) -> U16(X) a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U21(X1, X2) -> U21(X1, X2) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U22(X1, X2) -> U22(X1, X2) a__U23(tt) -> tt a__U23(X) -> U23(X) a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U31(X1, X2) -> U31(X1, X2) a__U32(tt) -> tt a__U32(X) -> U32(X) a__U41(tt) -> tt a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__plus(X1, X2) -> plus(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U11(X1, X2, X3)) -> MARK(X1) MARK(U12(X1, X2, X3)) -> MARK(X1) MARK(U13(X1, X2, X3)) -> MARK(X1) MARK(U14(X1, X2, X3)) -> MARK(X1) MARK(U15(X1, X2)) -> MARK(X1) MARK(U16(X)) -> MARK(X) MARK(U21(X1, X2)) -> MARK(X1) MARK(U22(X1, X2)) -> MARK(X1) MARK(U23(X)) -> MARK(X) MARK(U31(X1, X2)) -> MARK(X1) MARK(U32(X)) -> MARK(X) MARK(U41(X)) -> MARK(X) A__U51(tt, N) -> A__U52(a__isNatKind(N), N) A__U61(tt, M, N) -> A__U62(a__isNatKind(M), M, N) A__U62(tt, M, N) -> A__U63(a__isNat(N), M, N) A__U64(tt, M, N) -> A__PLUS(mark(N), mark(M)) A__U64(tt, M, N) -> MARK(N) A__U64(tt, M, N) -> MARK(M) MARK(plus(X1, X2)) -> A__PLUS(mark(X1), mark(X2)) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U12(X1, X2, X3)) -> MARK(X1) MARK(U11(X1, X2, X3)) -> MARK(X1) MARK(U13(X1, X2, X3)) -> MARK(X1) MARK(U14(X1, X2, X3)) -> MARK(X1) MARK(U15(X1, X2)) -> MARK(X1) MARK(U16(X)) -> MARK(X) MARK(U21(X1, X2)) -> MARK(X1) MARK(U22(X1, X2)) -> MARK(X1) MARK(U23(X)) -> MARK(X) MARK(U31(X1, X2)) -> MARK(X1) MARK(U32(X)) -> MARK(X) MARK(U41(X)) -> MARK(X) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__U11(tt, V1, V2) -> a__U12(a__isNatKind(V1), V1, V2) a__U12(tt, V1, V2) -> a__U13(a__isNatKind(V2), V1, V2) a__U13(tt, V1, V2) -> a__U14(a__isNatKind(V2), V1, V2) a__U14(tt, V1, V2) -> a__U15(a__isNat(V1), V2) a__U15(tt, V2) -> a__U16(a__isNat(V2)) a__U16(tt) -> tt a__U21(tt, V1) -> a__U22(a__isNatKind(V1), V1) a__U22(tt, V1) -> a__U23(a__isNat(V1)) a__U23(tt) -> tt a__U31(tt, V2) -> a__U32(a__isNatKind(V2)) a__U32(tt) -> tt a__U41(tt) -> tt a__U51(tt, N) -> a__U52(a__isNatKind(N), N) a__U52(tt, N) -> mark(N) a__U61(tt, M, N) -> a__U62(a__isNatKind(M), M, N) a__U62(tt, M, N) -> a__U63(a__isNat(N), M, N) a__U63(tt, M, N) -> a__U64(a__isNatKind(N), M, N) a__U64(tt, M, N) -> s(a__plus(mark(N), mark(M))) a__isNat(0) -> tt a__isNat(plus(V1, V2)) -> a__U11(a__isNatKind(V1), V1, V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1), V1) a__isNatKind(0) -> tt a__isNatKind(plus(V1, V2)) -> a__U31(a__isNatKind(V1), V2) a__isNatKind(s(V1)) -> a__U41(a__isNatKind(V1)) a__plus(N, 0) -> a__U51(a__isNat(N), N) a__plus(N, s(M)) -> a__U61(a__isNat(M), M, N) mark(U11(X1, X2, X3)) -> a__U11(mark(X1), X2, X3) mark(U12(X1, X2, X3)) -> a__U12(mark(X1), X2, X3) mark(isNatKind(X)) -> a__isNatKind(X) mark(U13(X1, X2, X3)) -> a__U13(mark(X1), X2, X3) mark(U14(X1, X2, X3)) -> a__U14(mark(X1), X2, X3) mark(U15(X1, X2)) -> a__U15(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(U16(X)) -> a__U16(mark(X)) mark(U21(X1, X2)) -> a__U21(mark(X1), X2) mark(U22(X1, X2)) -> a__U22(mark(X1), X2) mark(U23(X)) -> a__U23(mark(X)) mark(U31(X1, X2)) -> a__U31(mark(X1), X2) mark(U32(X)) -> a__U32(mark(X)) mark(U41(X)) -> a__U41(mark(X)) mark(U51(X1, X2)) -> a__U51(mark(X1), X2) mark(U52(X1, X2)) -> a__U52(mark(X1), X2) mark(U61(X1, X2, X3)) -> a__U61(mark(X1), X2, X3) mark(U62(X1, X2, X3)) -> a__U62(mark(X1), X2, X3) mark(U63(X1, X2, X3)) -> a__U63(mark(X1), X2, X3) mark(U64(X1, X2, X3)) -> a__U64(mark(X1), X2, X3) mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__U11(X1, X2, X3) -> U11(X1, X2, X3) a__U12(X1, X2, X3) -> U12(X1, X2, X3) a__isNatKind(X) -> isNatKind(X) a__U13(X1, X2, X3) -> U13(X1, X2, X3) a__U14(X1, X2, X3) -> U14(X1, X2, X3) a__U15(X1, X2) -> U15(X1, X2) a__isNat(X) -> isNat(X) a__U16(X) -> U16(X) a__U21(X1, X2) -> U21(X1, X2) a__U22(X1, X2) -> U22(X1, X2) a__U23(X) -> U23(X) a__U31(X1, X2) -> U31(X1, X2) a__U32(X) -> U32(X) a__U41(X) -> U41(X) a__U51(X1, X2) -> U51(X1, X2) a__U52(X1, X2) -> U52(X1, X2) a__U61(X1, X2, X3) -> U61(X1, X2, X3) a__U62(X1, X2, X3) -> U62(X1, X2, X3) a__U63(X1, X2, X3) -> U63(X1, X2, X3) a__U64(X1, X2, X3) -> U64(X1, X2, X3) a__plus(X1, X2) -> plus(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(U12(X1, X2, X3)) -> MARK(X1) MARK(U11(X1, X2, X3)) -> MARK(X1) MARK(U13(X1, X2, X3)) -> MARK(X1) MARK(U14(X1, X2, X3)) -> MARK(X1) MARK(U15(X1, X2)) -> MARK(X1) MARK(U16(X)) -> MARK(X) MARK(U21(X1, X2)) -> MARK(X1) MARK(U22(X1, X2)) -> MARK(X1) MARK(U23(X)) -> MARK(X) MARK(U31(X1, X2)) -> MARK(X1) MARK(U32(X)) -> MARK(X) MARK(U41(X)) -> MARK(X) MARK(plus(X1, X2)) -> MARK(X1) MARK(plus(X1, X2)) -> MARK(X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(U12(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U11(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U13(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U14(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U15(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U16(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(U21(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U22(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U23(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(U31(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(U32(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(U41(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(plus(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(plus(X1, X2)) -> MARK(X2) The graph contains the following edges 1 > 1 ---------------------------------------- (21) YES