/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) NonLoopProof [COMPLETE, 683 ms] (6) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(X, n__g(X), Y) -> f(activate(Y), activate(Y), activate(Y)) g(b) -> c b -> c g(X) -> n__g(X) activate(n__g(X)) -> g(X) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(X, n__g(X), Y) -> F(activate(Y), activate(Y), activate(Y)) F(X, n__g(X), Y) -> ACTIVATE(Y) ACTIVATE(n__g(X)) -> G(X) The TRS R consists of the following rules: f(X, n__g(X), Y) -> f(activate(Y), activate(Y), activate(Y)) g(b) -> c b -> c g(X) -> n__g(X) activate(n__g(X)) -> g(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(X, n__g(X), Y) -> F(activate(Y), activate(Y), activate(Y)) The TRS R consists of the following rules: f(X, n__g(X), Y) -> f(activate(Y), activate(Y), activate(Y)) g(b) -> c b -> c g(X) -> n__g(X) activate(n__g(X)) -> g(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 0, σ' = [ ], and μ' = [x0 / c] on the rule F(c, n__g(c), n__g(b))[ ]^n[ ] -> F(c, n__g(c), n__g(b))[ ]^n[x0 / c] This rule is correct for the QDP as the following derivation shows: F(c, n__g(c), n__g(b))[ ]^n[ ] -> F(c, n__g(c), n__g(b))[ ]^n[x0 / c] by Equivalency by Simplifying Mu with mu1: [x0 / c] mu2: [ ] intermediate steps: Instantiate mu F(x0, n__g(x0), n__g(b))[ ]^n[ ] -> F(c, n__g(c), n__g(b))[ ]^n[ ] by Narrowing at position: [2] F(x0, n__g(x0), n__g(b))[ ]^n[ ] -> F(c, n__g(c), activate(n__g(b)))[ ]^n[ ] by Narrowing at position: [1] F(x0, n__g(x0), n__g(b))[ ]^n[ ] -> F(c, activate(n__g(c)), activate(n__g(b)))[ ]^n[ ] by Narrowing at position: [1,0,0] F(x0, n__g(x0), n__g(b))[ ]^n[ ] -> F(c, activate(n__g(b)), activate(n__g(b)))[ ]^n[ ] by Narrowing at position: [0] intermediate steps: Instantiation - Instantiation F(x0, n__g(x0), n__g(y0))[ ]^n[ ] -> F(g(y0), activate(n__g(y0)), activate(n__g(y0)))[ ]^n[ ] by Narrowing at position: [0] intermediate steps: Instantiation - Instantiation F(X, n__g(X), Y)[ ]^n[ ] -> F(activate(Y), activate(Y), activate(Y))[ ]^n[ ] by Rule from TRS P intermediate steps: Instantiation activate(n__g(X))[ ]^n[ ] -> g(X)[ ]^n[ ] by Rule from TRS R g(b)[ ]^n[ ] -> c[ ]^n[ ] by Rule from TRS R b[ ]^n[ ] -> c[ ]^n[ ] by Rule from TRS R intermediate steps: Instantiation - Instantiation activate(X)[ ]^n[ ] -> X[ ]^n[ ] by Rule from TRS R intermediate steps: Instantiation - Instantiation activate(X)[ ]^n[ ] -> X[ ]^n[ ] by Rule from TRS R ---------------------------------------- (6) NO