/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSToCSRProof [EQUIVALENT, 0 ms] (2) CSR (3) CSRInnermostProof [EQUIVALENT, 0 ms] (4) CSR (5) CSDependencyPairsProof [EQUIVALENT, 6 ms] (6) QCSDP (7) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QCSDP (10) QCSDPSubtermProof [EQUIVALENT, 0 ms] (11) QCSDP (12) PIsEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QCSDP (15) QCSDPSubtermProof [EQUIVALENT, 0 ms] (16) QCSDP (17) PIsEmptyProof [EQUIVALENT, 0 ms] (18) YES (19) QCSDP (20) QCSDPSubtermProof [EQUIVALENT, 0 ms] (21) QCSDP (22) PIsEmptyProof [EQUIVALENT, 0 ms] (23) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. ---------------------------------------- (1) QTRSToCSRProof (EQUIVALENT) The following Q TRS is given: Q restricted rewrite system: The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Q is empty. Special symbols used for the transformation (see [GM04]): top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 The replacement map contains the following entries: terms: {1} cons: {1} recip: {1} sqr: {1} s: {1} 0: empty set add: {1, 2} dbl: {1} first: {1, 2} nil: empty set The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound). ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The replacement map contains the following entries: terms: {1} cons: {1} recip: {1} sqr: {1} s: {1} 0: empty set add: {1, 2} dbl: {1} first: {1, 2} nil: empty set ---------------------------------------- (3) CSRInnermostProof (EQUIVALENT) The CSR is orthogonal. By [CS_Inn] we can switch to innermost. ---------------------------------------- (4) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The replacement map contains the following entries: terms: {1} cons: {1} recip: {1} sqr: {1} s: {1} 0: empty set add: {1, 2} dbl: {1} first: {1, 2} nil: empty set Innermost Strategy. ---------------------------------------- (5) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (6) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, SQR_1, TERMS_1, ADD_2, DBL_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The ordinary context-sensitive dependency pairs DP_o are: TERMS(N) -> SQR(N) SQR(s(X)) -> ADD(sqr(X), dbl(X)) SQR(s(X)) -> SQR(X) SQR(s(X)) -> DBL(X) DBL(s(X)) -> DBL(X) ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (7) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 3 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, DBL_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: DBL(s(X)) -> DBL(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (10) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. DBL(s(X)) -> DBL(X) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. DBL(x1) = x1 Subterm Order ---------------------------------------- (11) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (12) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, ADD_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (15) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. ADD(s(X), Y) -> ADD(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. ADD(x1, x2) = x1 Subterm Order ---------------------------------------- (16) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (17) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, SQR_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: SQR(s(X)) -> SQR(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (20) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. SQR(s(X)) -> SQR(X) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. SQR(x1) = x1 Subterm Order ---------------------------------------- (21) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) The set Q consists of the following terms: terms(x0) sqr(0) sqr(s(x0)) dbl(0) dbl(s(x0)) add(0, x0) add(s(x0), x1) first(0, x0) first(s(x0), cons(x1, x2)) ---------------------------------------- (22) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (23) YES