/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 18 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 103 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 32 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 43 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 49 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 66 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) AND (15) QDP (16) QDPOrderProof [EQUIVALENT, 12 ms] (17) QDP (18) PisEmptyProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPOrderProof [EQUIVALENT, 7 ms] (22) QDP (23) QDPOrderProof [EQUIVALENT, 23 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QDPSizeChangeProof [EQUIVALENT, 0 ms] (30) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) A__AFTER(0, XS) -> MARK(XS) A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) A__AFTER(s(N), cons(X, XS)) -> MARK(N) A__AFTER(s(N), cons(X, XS)) -> MARK(XS) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(after(X1, X2)) -> A__AFTER(mark(X1), mark(X2)) MARK(after(X1, X2)) -> MARK(X1) MARK(after(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__AFTER(s(N), cons(X, XS)) -> MARK(N) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A__FROM(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(MARK(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(A__AFTER(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[1A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(a__from(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(a__after(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) A__AFTER(0, XS) -> MARK(XS) A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) A__AFTER(s(N), cons(X, XS)) -> MARK(XS) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(after(X1, X2)) -> A__AFTER(mark(X1), mark(X2)) MARK(after(X1, X2)) -> MARK(X1) MARK(after(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(after(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A__FROM(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(MARK(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(A__AFTER(x_1, x_2)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(a__from(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a__after(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) A__AFTER(0, XS) -> MARK(XS) A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) A__AFTER(s(N), cons(X, XS)) -> MARK(XS) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(after(X1, X2)) -> A__AFTER(mark(X1), mark(X2)) MARK(after(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(after(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A__FROM(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(MARK(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(A__AFTER(x_1, x_2)) = [[1A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[3A]] >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(a__from(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(a__after(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) A__AFTER(0, XS) -> MARK(XS) A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) A__AFTER(s(N), cons(X, XS)) -> MARK(XS) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(after(X1, X2)) -> A__AFTER(mark(X1), mark(X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__AFTER(s(N), cons(X, XS)) -> MARK(XS) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A__FROM(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(MARK(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(A__AFTER(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(s(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[1A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(mark(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[1A]] + [[1A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(a__from(x_1)) = [[1A]] + [[1A]] * x_1 >>> <<< POL(a__after(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) A__AFTER(0, XS) -> MARK(XS) A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(after(X1, X2)) -> A__AFTER(mark(X1), mark(X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__AFTER(0, XS) -> MARK(XS) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A__FROM(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(MARK(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(A__AFTER(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(mark(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(a__from(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(a__after(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(after(X1, X2)) -> A__AFTER(mark(X1), mark(X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (14) Complex Obligation (AND) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__AFTER(s(N), cons(X, XS)) -> A__AFTER(mark(N), mark(XS)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__AFTER_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( mark_1(x_1) ) = x_1 POL( from_1(x_1) ) = max{0, -2} POL( a__from_1(x_1) ) = max{0, -2} POL( after_2(x_1, x_2) ) = 2x_2 POL( a__after_2(x_1, x_2) ) = 2x_2 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 + 2 POL( cons_2(x_1, x_2) ) = 2x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (17) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(from(X)) -> A__FROM(mark(X)) A__FROM(X) -> MARK(X) MARK(from(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[3A]] + [[3A]] * x_1 >>> <<< POL(A__FROM(x_1)) = [[2A]] + [[3A]] * x_1 >>> <<< POL(mark(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a__from(x_1)) = [[3A]] + [[3A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(a__after(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(from(X)) -> A__FROM(mark(X)) A__FROM(X) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(from(X)) -> A__FROM(mark(X)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[0A]] + [[1A]] * x_1 >>> <<< POL(A__FROM(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a__from(x_1)) = [[0A]] + [[1A]] * x_1 >>> <<< POL(after(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(a__after(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[2A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: a__from(X) -> cons(mark(X), from(s(X))) a__after(0, XS) -> mark(XS) a__after(s(N), cons(X, XS)) -> a__after(mark(N), mark(XS)) mark(from(X)) -> a__from(mark(X)) mark(after(X1, X2)) -> a__after(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__from(X) -> from(X) a__after(X1, X2) -> after(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (30) YES