/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 17 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPSizeChangeProof [EQUIVALENT, 0 ms] (44) YES (45) QDP (46) QDPOrderProof [EQUIVALENT, 389 ms] (47) QDP (48) QDPOrderProof [EQUIVALENT, 166 ms] (49) QDP (50) QDPOrderProof [EQUIVALENT, 346 ms] (51) QDP (52) DependencyGraphProof [EQUIVALENT, 0 ms] (53) QDP (54) UsableRulesProof [EQUIVALENT, 0 ms] (55) QDP (56) QDPSizeChangeProof [EQUIVALENT, 0 ms] (57) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) ACTIVE(terms(N)) -> CONS(recip(sqr(N)), terms(s(N))) ACTIVE(terms(N)) -> RECIP(sqr(N)) ACTIVE(terms(N)) -> SQR(N) ACTIVE(terms(N)) -> TERMS(s(N)) ACTIVE(terms(N)) -> S(N) ACTIVE(sqr(0)) -> MARK(0) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) ACTIVE(sqr(s(X))) -> S(add(sqr(X), dbl(X))) ACTIVE(sqr(s(X))) -> ADD(sqr(X), dbl(X)) ACTIVE(sqr(s(X))) -> SQR(X) ACTIVE(sqr(s(X))) -> DBL(X) ACTIVE(dbl(0)) -> MARK(0) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) ACTIVE(dbl(s(X))) -> S(s(dbl(X))) ACTIVE(dbl(s(X))) -> S(dbl(X)) ACTIVE(dbl(s(X))) -> DBL(X) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(add(s(X), Y)) -> S(add(X, Y)) ACTIVE(add(s(X), Y)) -> ADD(X, Y) ACTIVE(first(0, X)) -> MARK(nil) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z)) ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> TERMS(mark(X)) MARK(terms(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> RECIP(mark(X)) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> SQR(mark(X)) MARK(sqr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(0) -> ACTIVE(0) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> DBL(mark(X)) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> FIRST(mark(X1), mark(X2)) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(nil) -> ACTIVE(nil) TERMS(mark(X)) -> TERMS(X) TERMS(active(X)) -> TERMS(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) RECIP(mark(X)) -> RECIP(X) RECIP(active(X)) -> RECIP(X) SQR(mark(X)) -> SQR(X) SQR(active(X)) -> SQR(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) DBL(mark(X)) -> DBL(X) DBL(active(X)) -> DBL(X) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 29 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FIRST(X1, mark(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FIRST(mark(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(active(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(X1, active(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DBL(active(X)) -> DBL(X) The graph contains the following edges 1 > 1 *DBL(mark(X)) -> DBL(X) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(X1, mark(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ADD(mark(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(active(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(X1, active(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SQR(active(X)) -> SQR(X) The graph contains the following edges 1 > 1 *SQR(mark(X)) -> SQR(X) The graph contains the following edges 1 > 1 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *RECIP(active(X)) -> RECIP(X) The graph contains the following edges 1 > 1 *RECIP(mark(X)) -> RECIP(X) The graph contains the following edges 1 > 1 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TERMS(active(X)) -> TERMS(X) The graph contains the following edges 1 > 1 *TERMS(mark(X)) -> TERMS(X) The graph contains the following edges 1 > 1 ---------------------------------------- (44) YES ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(terms(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> ACTIVE(recip(mark(X))) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) ACTIVE(add(0, X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(s(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(recip(X)) -> ACTIVE(recip(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = MARK terms(x1) = terms ACTIVE(x1) = x1 mark(x1) = x1 cons(x1, x2) = cons recip(x1) = recip sqr(x1) = sqr s(x1) = s add(x1, x2) = add dbl(x1) = dbl 0 = 0 first(x1, x2) = first active(x1) = active nil = nil Recursive path order with status [RPO]. Quasi-Precedence: [MARK, terms, cons, sqr, s, add, dbl, 0, first] > active > recip nil > active > recip Status: MARK: [] terms: [] cons: [] recip: multiset status sqr: [] s: [] add: [] dbl: [] 0: multiset status first: [] active: [] nil: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(terms(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) ACTIVE(add(0, X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(s(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = max{0, x_1 - 1} POL( add_2(x_1, x_2) ) = 2 POL( cons_2(x_1, x_2) ) = max{0, -2} POL( dbl_1(x_1) ) = 2 POL( first_2(x_1, x_2) ) = 2 POL( s_1(x_1) ) = 0 POL( sqr_1(x_1) ) = 2 POL( terms_1(x_1) ) = 2 POL( mark_1(x_1) ) = max{0, -2} POL( active_1(x_1) ) = 2x_1 + 2 POL( recip_1(x_1) ) = max{0, -2} POL( 0 ) = 0 POL( nil ) = 2 POL( MARK_1(x_1) ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(terms(X)) -> MARK(X) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) ACTIVE(add(0, X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(s(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(terms(X)) -> MARK(X) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) ACTIVE(add(0, X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(s(X)) -> MARK(X) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = MARK(x1) terms(x1) = terms(x1) ACTIVE(x1) = ACTIVE(x1) mark(x1) = x1 cons(x1, x2) = x1 recip(x1) = x1 sqr(x1) = sqr(x1) s(x1) = s(x1) add(x1, x2) = add(x1, x2) dbl(x1) = dbl(x1) 0 = 0 first(x1, x2) = first(x1, x2) active(x1) = x1 nil = nil Recursive path order with status [RPO]. Quasi-Precedence: terms_1 > sqr_1 > add_2 > s_1 > [MARK_1, ACTIVE_1] > first_2 terms_1 > sqr_1 > dbl_1 > s_1 > [MARK_1, ACTIVE_1] > first_2 terms_1 > sqr_1 > dbl_1 > [0, nil] > [MARK_1, ACTIVE_1] > first_2 Status: MARK_1: multiset status terms_1: multiset status ACTIVE_1: multiset status sqr_1: [1] s_1: multiset status add_2: multiset status dbl_1: [1] 0: multiset status first_2: multiset status nil: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(terms(X)) -> active(terms(mark(X))) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) mark(recip(X)) -> active(recip(mark(X))) active(dbl(s(X))) -> mark(s(s(dbl(X)))) mark(sqr(X)) -> active(sqr(mark(X))) active(add(0, X)) -> mark(X) mark(s(X)) -> active(s(mark(X))) active(add(s(X), Y)) -> mark(s(add(X, Y))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(dbl(0)) -> mark(0) active(first(0, X)) -> mark(nil) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(recip(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(recip(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(recip(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (57) YES