/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 3 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 100 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 49 ms] (10) QDP (11) PisEmptyProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__FST(s(X), cons(Y, Z)) -> MARK(Y) A__FROM(X) -> MARK(X) A__ADD(0, X) -> MARK(X) MARK(fst(X1, X2)) -> A__FST(mark(X1), mark(X2)) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> A__LEN(mark(X)) MARK(len(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(fst(X1, X2)) -> A__FST(mark(X1), mark(X2)) A__FST(s(X), cons(Y, Z)) -> MARK(Y) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(from(X)) -> A__FROM(mark(X)) A__FROM(X) -> MARK(X) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) A__ADD(0, X) -> MARK(X) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(fst(X1, X2)) -> A__FST(mark(X1), mark(X2)) A__FST(s(X), cons(Y, Z)) -> MARK(Y) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(from(X)) -> A__FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__ADD_2(x_1, x_2) ) = max{0, x_1 + x_2 - 2} POL( A__FROM_1(x_1) ) = x_1 POL( A__FST_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 1} POL( mark_1(x_1) ) = x_1 POL( fst_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( a__fst_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( from_1(x_1) ) = x_1 + 2 POL( a__from_1(x_1) ) = x_1 + 2 POL( add_2(x_1, x_2) ) = x_1 + 2x_2 POL( a__add_2(x_1, x_2) ) = x_1 + 2x_2 POL( 0 ) = 2 POL( len_1(x_1) ) = 2x_1 POL( a__len_1(x_1) ) = 2x_1 POL( s_1(x_1) ) = 2 POL( nil ) = 1 POL( cons_2(x_1, x_2) ) = x_1 + 2 POL( MARK_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) a__add(0, X) -> mark(X) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__from(X) -> from(X) a__fst(0, Z) -> nil a__fst(X1, X2) -> fst(X1, X2) a__add(s(X), Y) -> s(add(X, Y)) a__add(X1, X2) -> add(X1, X2) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) a__len(X) -> len(X) a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: A__FROM(X) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) A__ADD(0, X) -> MARK(X) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: A__ADD(0, X) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__ADD(0, X) -> MARK(X) MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__ADD_2(x_1, x_2) ) = 2x_2 + 1 POL( mark_1(x_1) ) = 2x_1 + 1 POL( fst_2(x_1, x_2) ) = 1 POL( a__fst_2(x_1, x_2) ) = 1 POL( from_1(x_1) ) = 2 POL( a__from_1(x_1) ) = 2 POL( add_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( a__add_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( 0 ) = 0 POL( len_1(x_1) ) = 2x_1 + 2 POL( a__len_1(x_1) ) = 2x_1 + 2 POL( s_1(x_1) ) = 1 POL( nil ) = 0 POL( cons_2(x_1, x_2) ) = x_2 POL( MARK_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) a__add(0, X) -> mark(X) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__from(X) -> from(X) a__fst(0, Z) -> nil a__fst(X1, X2) -> fst(X1, X2) a__add(s(X), Y) -> s(add(X, Y)) a__add(X1, X2) -> add(X1, X2) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) a__len(X) -> len(X) a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) ---------------------------------------- (10) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: a__fst(0, Z) -> nil a__fst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z)) a__from(X) -> cons(mark(X), from(s(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__len(nil) -> 0 a__len(cons(X, Z)) -> s(len(Z)) mark(fst(X1, X2)) -> a__fst(mark(X1), mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(0) -> 0 mark(s(X)) -> s(X) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) a__fst(X1, X2) -> fst(X1, X2) a__from(X) -> from(X) a__add(X1, X2) -> add(X1, X2) a__len(X) -> len(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (12) YES