/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220add : [o * o] --> o a!6220!6220from : [o] --> o a!6220!6220fst : [o * o] --> o a!6220!6220len : [o] --> o add : [o * o] --> o cons : [o * o] --> o from : [o] --> o fst : [o * o] --> o len : [o] --> o mark : [o] --> o nil : [] --> o s : [o] --> o a!6220!6220fst(0, X) => nil a!6220!6220fst(s(X), cons(Y, Z)) => cons(mark(Y), fst(X, Z)) a!6220!6220from(X) => cons(mark(X), from(s(X))) a!6220!6220add(0, X) => mark(X) a!6220!6220add(s(X), Y) => s(add(X, Y)) a!6220!6220len(nil) => 0 a!6220!6220len(cons(X, Y)) => s(len(Y)) mark(fst(X, Y)) => a!6220!6220fst(mark(X), mark(Y)) mark(from(X)) => a!6220!6220from(mark(X)) mark(add(X, Y)) => a!6220!6220add(mark(X), mark(Y)) mark(len(X)) => a!6220!6220len(mark(X)) mark(0) => 0 mark(s(X)) => s(X) mark(nil) => nil mark(cons(X, Y)) => cons(mark(X), Y) a!6220!6220fst(X, Y) => fst(X, Y) a!6220!6220from(X) => from(X) a!6220!6220add(X, Y) => add(X, Y) a!6220!6220len(X) => len(X) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] a!6220!6220fst#(s(X), cons(Y, Z)) =#> mark#(Y) 1] a!6220!6220from#(X) =#> mark#(X) 2] a!6220!6220add#(0, X) =#> mark#(X) 3] mark#(fst(X, Y)) =#> a!6220!6220fst#(mark(X), mark(Y)) 4] mark#(fst(X, Y)) =#> mark#(X) 5] mark#(fst(X, Y)) =#> mark#(Y) 6] mark#(from(X)) =#> a!6220!6220from#(mark(X)) 7] mark#(from(X)) =#> mark#(X) 8] mark#(add(X, Y)) =#> a!6220!6220add#(mark(X), mark(Y)) 9] mark#(add(X, Y)) =#> mark#(X) 10] mark#(add(X, Y)) =#> mark#(Y) 11] mark#(len(X)) =#> a!6220!6220len#(mark(X)) 12] mark#(len(X)) =#> mark#(X) 13] mark#(cons(X, Y)) =#> mark#(X) Rules R_0: a!6220!6220fst(0, X) => nil a!6220!6220fst(s(X), cons(Y, Z)) => cons(mark(Y), fst(X, Z)) a!6220!6220from(X) => cons(mark(X), from(s(X))) a!6220!6220add(0, X) => mark(X) a!6220!6220add(s(X), Y) => s(add(X, Y)) a!6220!6220len(nil) => 0 a!6220!6220len(cons(X, Y)) => s(len(Y)) mark(fst(X, Y)) => a!6220!6220fst(mark(X), mark(Y)) mark(from(X)) => a!6220!6220from(mark(X)) mark(add(X, Y)) => a!6220!6220add(mark(X), mark(Y)) mark(len(X)) => a!6220!6220len(mark(X)) mark(0) => 0 mark(s(X)) => s(X) mark(nil) => nil mark(cons(X, Y)) => cons(mark(X), Y) a!6220!6220fst(X, Y) => fst(X, Y) a!6220!6220from(X) => from(X) a!6220!6220add(X, Y) => add(X, Y) a!6220!6220len(X) => len(X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 1 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 2 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 3 : 0 * 4 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 5 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 6 : 1 * 7 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 8 : 2 * 9 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 10 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 11 : * 12 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 * 13 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 This graph has the following strongly connected components: P_1: a!6220!6220fst#(s(X), cons(Y, Z)) =#> mark#(Y) a!6220!6220from#(X) =#> mark#(X) a!6220!6220add#(0, X) =#> mark#(X) mark#(fst(X, Y)) =#> a!6220!6220fst#(mark(X), mark(Y)) mark#(fst(X, Y)) =#> mark#(X) mark#(fst(X, Y)) =#> mark#(Y) mark#(from(X)) =#> a!6220!6220from#(mark(X)) mark#(from(X)) =#> mark#(X) mark#(add(X, Y)) =#> a!6220!6220add#(mark(X), mark(Y)) mark#(add(X, Y)) =#> mark#(X) mark#(add(X, Y)) =#> mark#(Y) mark#(len(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220fst#(s(X), cons(Y, Z)) >? mark#(Y) a!6220!6220from#(X) >? mark#(X) a!6220!6220add#(0, X) >? mark#(X) mark#(fst(X, Y)) >? a!6220!6220fst#(mark(X), mark(Y)) mark#(fst(X, Y)) >? mark#(X) mark#(fst(X, Y)) >? mark#(Y) mark#(from(X)) >? a!6220!6220from#(mark(X)) mark#(from(X)) >? mark#(X) mark#(add(X, Y)) >? a!6220!6220add#(mark(X), mark(Y)) mark#(add(X, Y)) >? mark#(X) mark#(add(X, Y)) >? mark#(Y) mark#(len(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) a!6220!6220fst(0, X) >= nil a!6220!6220fst(s(X), cons(Y, Z)) >= cons(mark(Y), fst(X, Z)) a!6220!6220from(X) >= cons(mark(X), from(s(X))) a!6220!6220add(0, X) >= mark(X) a!6220!6220add(s(X), Y) >= s(add(X, Y)) a!6220!6220len(nil) >= 0 a!6220!6220len(cons(X, Y)) >= s(len(Y)) mark(fst(X, Y)) >= a!6220!6220fst(mark(X), mark(Y)) mark(from(X)) >= a!6220!6220from(mark(X)) mark(add(X, Y)) >= a!6220!6220add(mark(X), mark(Y)) mark(len(X)) >= a!6220!6220len(mark(X)) mark(0) >= 0 mark(s(X)) >= s(X) mark(nil) >= nil mark(cons(X, Y)) >= cons(mark(X), Y) a!6220!6220fst(X, Y) >= fst(X, Y) a!6220!6220from(X) >= from(X) a!6220!6220add(X, Y) >= add(X, Y) a!6220!6220len(X) >= len(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220add = \y0y1.3 + y0 + y1 a!6220!6220add# = \y0y1.1 + y1 a!6220!6220from = \y0.1 + 2y0 a!6220!6220from# = \y0.1 + 2y0 a!6220!6220fst = \y0y1.2y0 + 2y1 a!6220!6220fst# = \y0y1.2y0 + 2y1 a!6220!6220len = \y0.2 + y0 add = \y0y1.3 + y0 + y1 cons = \y0y1.2y0 from = \y0.1 + 2y0 fst = \y0y1.2y0 + 2y1 len = \y0.2 + y0 mark = \y0.y0 mark# = \y0.1 + y0 nil = 0 s = \y0.2 Using this interpretation, the requirements translate to: [[a!6220!6220fst#(s(_x0), cons(_x1, _x2))]] = 4 + 4x1 > 1 + x1 = [[mark#(_x1)]] [[a!6220!6220from#(_x0)]] = 1 + 2x0 >= 1 + x0 = [[mark#(_x0)]] [[a!6220!6220add#(0, _x0)]] = 1 + x0 >= 1 + x0 = [[mark#(_x0)]] [[mark#(fst(_x0, _x1))]] = 1 + 2x0 + 2x1 > 2x0 + 2x1 = [[a!6220!6220fst#(mark(_x0), mark(_x1))]] [[mark#(fst(_x0, _x1))]] = 1 + 2x0 + 2x1 >= 1 + x0 = [[mark#(_x0)]] [[mark#(fst(_x0, _x1))]] = 1 + 2x0 + 2x1 >= 1 + x1 = [[mark#(_x1)]] [[mark#(from(_x0))]] = 2 + 2x0 > 1 + 2x0 = [[a!6220!6220from#(mark(_x0))]] [[mark#(from(_x0))]] = 2 + 2x0 > 1 + x0 = [[mark#(_x0)]] [[mark#(add(_x0, _x1))]] = 4 + x0 + x1 > 1 + x1 = [[a!6220!6220add#(mark(_x0), mark(_x1))]] [[mark#(add(_x0, _x1))]] = 4 + x0 + x1 > 1 + x0 = [[mark#(_x0)]] [[mark#(add(_x0, _x1))]] = 4 + x0 + x1 > 1 + x1 = [[mark#(_x1)]] [[mark#(len(_x0))]] = 3 + x0 > 1 + x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 1 + 2x0 >= 1 + x0 = [[mark#(_x0)]] [[a!6220!6220fst(0, _x0)]] = 2x0 >= 0 = [[nil]] [[a!6220!6220fst(s(_x0), cons(_x1, _x2))]] = 4 + 4x1 >= 2x1 = [[cons(mark(_x1), fst(_x0, _x2))]] [[a!6220!6220from(_x0)]] = 1 + 2x0 >= 2x0 = [[cons(mark(_x0), from(s(_x0)))]] [[a!6220!6220add(0, _x0)]] = 3 + x0 >= x0 = [[mark(_x0)]] [[a!6220!6220add(s(_x0), _x1)]] = 5 + x1 >= 2 = [[s(add(_x0, _x1))]] [[a!6220!6220len(nil)]] = 2 >= 0 = [[0]] [[a!6220!6220len(cons(_x0, _x1))]] = 2 + 2x0 >= 2 = [[s(len(_x1))]] [[mark(fst(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220fst(mark(_x0), mark(_x1))]] [[mark(from(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[a!6220!6220from(mark(_x0))]] [[mark(add(_x0, _x1))]] = 3 + x0 + x1 >= 3 + x0 + x1 = [[a!6220!6220add(mark(_x0), mark(_x1))]] [[mark(len(_x0))]] = 2 + x0 >= 2 + x0 = [[a!6220!6220len(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2 >= 2 = [[s(_x0)]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[cons(mark(_x0), _x1)]] [[a!6220!6220fst(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[fst(_x0, _x1)]] [[a!6220!6220from(_x0)]] = 1 + 2x0 >= 1 + 2x0 = [[from(_x0)]] [[a!6220!6220add(_x0, _x1)]] = 3 + x0 + x1 >= 3 + x0 + x1 = [[add(_x0, _x1)]] [[a!6220!6220len(_x0)]] = 2 + x0 >= 2 + x0 = [[len(_x0)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_2, R_0, minimal, formative), where P_2 consists of: a!6220!6220from#(X) =#> mark#(X) a!6220!6220add#(0, X) =#> mark#(X) mark#(fst(X, Y)) =#> mark#(X) mark#(fst(X, Y)) =#> mark#(Y) mark#(cons(X, Y)) =#> mark#(X) Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 2, 3, 4 * 1 : 2, 3, 4 * 2 : 2, 3, 4 * 3 : 2, 3, 4 * 4 : 2, 3, 4 This graph has the following strongly connected components: P_3: mark#(fst(X, Y)) =#> mark#(X) mark#(fst(X, Y)) =#> mark#(Y) mark#(cons(X, Y)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_2, R_0, m, f) by (P_3, R_0, m, f). Thus, the original system is terminating if (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(fst(X, Y))) = fst(X, Y) |> X = nu(mark#(X)) nu(mark#(fst(X, Y))) = fst(X, Y) |> Y = nu(mark#(Y)) nu(mark#(cons(X, Y))) = cons(X, Y) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.