/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z))) 2NDSPOS(s(N), cons(X, Z)) -> ACTIVATE(Z) 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z)) 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> ACTIVATE(Z) 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z))) 2NDSNEG(s(N), cons(X, Z)) -> ACTIVATE(Z) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z)) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> ACTIVATE(Z) PI(X) -> 2NDSPOS(X, from(0)) PI(X) -> FROM(0) PLUS(s(X), Y) -> S(plus(X, Y)) PLUS(s(X), Y) -> PLUS(X, Y) TIMES(s(X), Y) -> PLUS(Y, times(X, Y)) TIMES(s(X), Y) -> TIMES(X, Y) SQUARE(X) -> TIMES(X, X) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 11 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__from(X)) -> ACTIVATE(X) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__from(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 *ACTIVATE(n__from(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(X), Y) -> PLUS(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(X), Y) -> PLUS(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(X), Y) -> PLUS(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(X), Y) -> TIMES(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(X), Y) -> TIMES(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TIMES(s(X), Y) -> TIMES(X, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z)) 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z))) 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z)) 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z))) The TRS R consists of the following rules: from(X) -> cons(X, n__from(n__s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z)) The graph contains the following edges 1 > 1 *2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z))) The graph contains the following edges 1 >= 1 *2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z))) The graph contains the following edges 1 >= 1 *2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z)) The graph contains the following edges 1 > 1 ---------------------------------------- (22) YES