/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 200 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 171 ms] (12) QDP (13) QDPOrderProof [EQUIVALENT, 46 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__0, Y) -> 0^1 MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) DIV(s(X), n__s(Y)) -> ACTIVATE(Y) IF(true, X, Y) -> ACTIVATE(X) IF(false, X, Y) -> ACTIVATE(Y) ACTIVATE(n__0) -> 0^1 ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) IF(true, X, Y) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) IF(false, X, Y) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF(false, X, Y) -> ACTIVATE(Y) we obtained the following new rules [LPAR04]: (IF(false, n__s(n__div(n__minus(y_4, y_6), n__s(y_8))), n__0) -> ACTIVATE(n__0),IF(false, n__s(n__div(n__minus(y_4, y_6), n__s(y_8))), n__0) -> ACTIVATE(n__0)) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) IF(true, X, Y) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> ACTIVATE(Y) IF(false, n__s(n__div(n__minus(y_4, y_6), n__s(y_8))), n__0) -> ACTIVATE(n__0) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) IF(true, X, Y) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. DIV(s(X), n__s(Y)) -> ACTIVATE(Y) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVATE(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__div(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(DIV(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(activate(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(IF(x_1, x_2, x_3)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 + [[-I]] * x_3 >>> <<< POL(geq(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__minus(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(MINUS(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(GEQ(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(div(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[-I]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(false) = [[0A]] >>> <<< POL(minus(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) s(X) -> n__s(X) div(0, n__s(Y)) -> 0 div(X1, X2) -> n__div(X1, X2) minus(n__0, Y) -> 0 minus(X1, X2) -> n__minus(X1, X2) minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 0 -> n__0 ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) IF(true, X, Y) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MINUS(n__s(X), n__s(Y)) -> ACTIVATE(Y) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVATE(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(n__s(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(n__div(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(DIV(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(activate(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(IF(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 + [[-I]] * x_3 >>> <<< POL(geq(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(n__minus(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(MINUS(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(GEQ(x_1, x_2)) = [[1A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(0) = [[0A]] >>> <<< POL(div(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(if(x_1, x_2, x_3)) = [[1A]] + [[-I]] * x_1 + [[0A]] * x_2 + [[1A]] * x_3 >>> <<< POL(false) = [[0A]] >>> <<< POL(minus(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) s(X) -> n__s(X) div(0, n__s(Y)) -> 0 div(X1, X2) -> n__div(X1, X2) minus(n__0, Y) -> 0 minus(X1, X2) -> n__minus(X1, X2) minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 0 -> n__0 ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) IF(true, X, Y) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__div(X1, X2)) -> DIV(activate(X1), X2) ACTIVATE(n__div(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__minus(X1, X2)) -> MINUS(X1, X2) MINUS(n__s(X), n__s(Y)) -> MINUS(activate(X), activate(Y)) DIV(s(X), n__s(Y)) -> GEQ(X, activate(Y)) GEQ(n__s(X), n__s(Y)) -> GEQ(activate(X), activate(Y)) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(X) GEQ(n__s(X), n__s(Y)) -> ACTIVATE(Y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( DIV_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( GEQ_2(x_1, x_2) ) = x_1 + 2x_2 + 1 POL( IF_3(x_1, ..., x_3) ) = x_2 + 1 POL( MINUS_2(x_1, x_2) ) = x_1 POL( n__div_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( n__s_1(x_1) ) = x_1 + 1 POL( n__minus_2(x_1, x_2) ) = x_1 POL( activate_1(x_1) ) = x_1 POL( n__0 ) = 0 POL( 0 ) = 0 POL( s_1(x_1) ) = x_1 + 1 POL( div_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( if_3(x_1, ..., x_3) ) = x_2 + x_3 POL( geq_2(x_1, x_2) ) = max{0, -2} POL( true ) = 0 POL( false ) = 0 POL( minus_2(x_1, x_2) ) = x_1 POL( ACTIVATE_1(x_1) ) = x_1 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) s(X) -> n__s(X) div(0, n__s(Y)) -> 0 div(X1, X2) -> n__div(X1, X2) minus(n__0, Y) -> 0 minus(X1, X2) -> n__minus(X1, X2) minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 0 -> n__0 ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(s(X), n__s(Y)) -> IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) IF(true, X, Y) -> ACTIVATE(X) MINUS(n__s(X), n__s(Y)) -> ACTIVATE(X) The TRS R consists of the following rules: minus(n__0, Y) -> 0 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) geq(X, n__0) -> true geq(n__0, n__s(Y)) -> false geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) div(0, n__s(Y)) -> 0 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) 0 -> n__0 s(X) -> n__s(X) div(X1, X2) -> n__div(X1, X2) minus(X1, X2) -> n__minus(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__div(X1, X2)) -> div(activate(X1), X2) activate(n__minus(X1, X2)) -> minus(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. ---------------------------------------- (16) TRUE