/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) NonTerminationLoopProof [COMPLETE, 0 ms] (9) NO (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, n__app(activate(XS), YS)) from(X) -> cons(X, n__from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS))) prefix(L) -> cons(nil, n__zWadr(L, prefix(L))) app(X1, X2) -> n__app(X1, X2) from(X) -> n__from(X) nil -> n__nil zWadr(X1, X2) -> n__zWadr(X1, X2) activate(n__app(X1, X2)) -> app(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__zWadr(X1, X2)) -> zWadr(X1, X2) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(X, XS), YS) -> ACTIVATE(XS) ZWADR(cons(X, XS), cons(Y, YS)) -> APP(Y, cons(X, n__nil)) ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) PREFIX(L) -> NIL PREFIX(L) -> PREFIX(L) ACTIVATE(n__app(X1, X2)) -> APP(X1, X2) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__nil) -> NIL ACTIVATE(n__zWadr(X1, X2)) -> ZWADR(X1, X2) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, n__app(activate(XS), YS)) from(X) -> cons(X, n__from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS))) prefix(L) -> cons(nil, n__zWadr(L, prefix(L))) app(X1, X2) -> n__app(X1, X2) from(X) -> n__from(X) nil -> n__nil zWadr(X1, X2) -> n__zWadr(X1, X2) activate(n__app(X1, X2)) -> app(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__zWadr(X1, X2)) -> zWadr(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(L) -> PREFIX(L) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, n__app(activate(XS), YS)) from(X) -> cons(X, n__from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS))) prefix(L) -> cons(nil, n__zWadr(L, prefix(L))) app(X1, X2) -> n__app(X1, X2) from(X) -> n__from(X) nil -> n__nil zWadr(X1, X2) -> n__zWadr(X1, X2) activate(n__app(X1, X2)) -> app(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__zWadr(X1, X2)) -> zWadr(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(L) -> PREFIX(L) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = PREFIX(L) evaluates to t =PREFIX(L) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from PREFIX(L) to PREFIX(L). ---------------------------------------- (9) NO ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__app(X1, X2)) -> APP(X1, X2) APP(cons(X, XS), YS) -> ACTIVATE(XS) ACTIVATE(n__zWadr(X1, X2)) -> ZWADR(X1, X2) ZWADR(cons(X, XS), cons(Y, YS)) -> APP(Y, cons(X, n__nil)) ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, n__app(activate(XS), YS)) from(X) -> cons(X, n__from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS))) prefix(L) -> cons(nil, n__zWadr(L, prefix(L))) app(X1, X2) -> n__app(X1, X2) from(X) -> n__from(X) nil -> n__nil zWadr(X1, X2) -> n__zWadr(X1, X2) activate(n__app(X1, X2)) -> app(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__zWadr(X1, X2)) -> zWadr(X1, X2) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__app(X1, X2)) -> APP(X1, X2) APP(cons(X, XS), YS) -> ACTIVATE(XS) ACTIVATE(n__zWadr(X1, X2)) -> ZWADR(X1, X2) ZWADR(cons(X, XS), cons(Y, YS)) -> APP(Y, cons(X, n__nil)) ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(cons(X, XS), YS) -> ACTIVATE(XS) The graph contains the following edges 1 > 1 *ACTIVATE(n__app(X1, X2)) -> APP(X1, X2) The graph contains the following edges 1 > 1, 1 > 2 *ACTIVATE(n__zWadr(X1, X2)) -> ZWADR(X1, X2) The graph contains the following edges 1 > 1, 1 > 2 *ZWADR(cons(X, XS), cons(Y, YS)) -> APP(Y, cons(X, n__nil)) The graph contains the following edges 2 > 1 *ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS) The graph contains the following edges 1 > 1 *ZWADR(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS) The graph contains the following edges 2 > 1 ---------------------------------------- (14) YES