/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 115 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 26 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 23 ms] (6) QTRS (7) QTRSRRRProof [EQUIVALENT, 25 ms] (8) QTRS (9) DependencyPairsProof [EQUIVALENT, 33 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) MRRProof [EQUIVALENT, 62 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) QDP (17) MRRProof [EQUIVALENT, 46 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) QDP (21) MRRProof [EQUIVALENT, 0 ms] (22) QDP (23) MRRProof [EQUIVALENT, 0 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) MRRProof [EQUIVALENT, 13 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPOrderProof [EQUIVALENT, 45 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QDPSizeChangeProof [EQUIVALENT, 0 ms] (38) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__tail(cons(X, XS)) -> mark(XS) a__repItems(nil) -> nil a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__incr(x_1)) = 2*x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 1 + 2*x_1 POL(a__tail(x_1)) = 2*x_1 POL(a__take(x_1, x_2)) = x_1 + 2*x_2 POL(a__zip(x_1, x_2)) = x_1 + 2*x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + 2*x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 1 + 2*x_1 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 POL(take(x_1, x_2)) = x_1 + 2*x_2 POL(zip(x_1, x_2)) = x_1 + 2*x_2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__repItems(nil) -> nil ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__tail(cons(X, XS)) -> mark(XS) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__incr(x_1)) = x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = 1 + x_1 POL(a__take(x_1, x_2)) = 2*x_1 + x_2 POL(a__zip(x_1, x_2)) = x_1 + 2*x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + 2*x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = x_1 POL(tail(x_1)) = 1 + x_1 POL(take(x_1, x_2)) = 2*x_1 + x_2 POL(zip(x_1, x_2)) = x_1 + 2*x_2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__tail(cons(X, XS)) -> mark(XS) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__incr(x_1)) = 2*x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = x_1 POL(a__take(x_1, x_2)) = 2*x_1 + x_2 POL(a__zip(x_1, x_2)) = 2 + 2*x_1 + x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = 2*x_1 + x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = 2*x_1 POL(tail(x_1)) = x_1 POL(take(x_1, x_2)) = 2*x_1 + x_2 POL(zip(x_1, x_2)) = 2 + 2*x_1 + x_2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__zip(nil, XS) -> nil a__zip(X, nil) -> nil ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. ---------------------------------------- (7) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__incr(x_1)) = x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = x_1 POL(a__take(x_1, x_2)) = 1 + x_1 + x_2 POL(a__zip(x_1, x_2)) = x_1 + 2*x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + 2*x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = x_1 POL(tail(x_1)) = x_1 POL(take(x_1, x_2)) = 1 + x_1 + x_2 POL(zip(x_1, x_2)) = x_1 + 2*x_2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__take(0, XS) -> nil ---------------------------------------- (8) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. ---------------------------------------- (9) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A__ODDNS -> A__INCR(a__pairNs) A__ODDNS -> A__PAIRNS A__INCR(cons(X, XS)) -> MARK(X) A__TAKE(s(N), cons(X, XS)) -> MARK(X) A__ZIP(cons(X, XS), cons(Y, YS)) -> MARK(X) A__ZIP(cons(X, XS), cons(Y, YS)) -> MARK(Y) A__REPITEMS(cons(X, XS)) -> MARK(X) MARK(pairNs) -> A__PAIRNS MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(zip(X1, X2)) -> A__ZIP(mark(X1), mark(X2)) MARK(zip(X1, X2)) -> MARK(X1) MARK(zip(X1, X2)) -> MARK(X2) MARK(tail(X)) -> A__TAIL(mark(X)) MARK(tail(X)) -> MARK(X) MARK(repItems(X)) -> A__REPITEMS(mark(X)) MARK(repItems(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(zip(X1, X2)) -> A__ZIP(mark(X1), mark(X2)) A__ZIP(cons(X, XS), cons(Y, YS)) -> MARK(X) MARK(zip(X1, X2)) -> MARK(X1) MARK(zip(X1, X2)) -> MARK(X2) MARK(tail(X)) -> MARK(X) MARK(repItems(X)) -> A__REPITEMS(mark(X)) A__REPITEMS(cons(X, XS)) -> MARK(X) MARK(repItems(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) A__ZIP(cons(X, XS), cons(Y, YS)) -> MARK(Y) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(zip(X1, X2)) -> A__ZIP(mark(X1), mark(X2)) MARK(zip(X1, X2)) -> MARK(X1) MARK(zip(X1, X2)) -> MARK(X2) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__INCR(x_1)) = x_1 POL(A__ODDNS) = 0 POL(A__REPITEMS(x_1)) = 2*x_1 POL(A__TAKE(x_1, x_2)) = 2*x_1 + 2*x_2 POL(A__ZIP(x_1, x_2)) = 2*x_1 + 2*x_2 POL(MARK(x_1)) = x_1 POL(a__incr(x_1)) = 2*x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = x_1 POL(a__take(x_1, x_2)) = 2*x_1 + 2*x_2 POL(a__zip(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = 2*x_1 POL(tail(x_1)) = x_1 POL(take(x_1, x_2)) = 2*x_1 + 2*x_2 POL(zip(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) A__ZIP(cons(X, XS), cons(Y, YS)) -> MARK(X) MARK(tail(X)) -> MARK(X) MARK(repItems(X)) -> A__REPITEMS(mark(X)) A__REPITEMS(cons(X, XS)) -> MARK(X) MARK(repItems(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) A__ZIP(cons(X, XS), cons(Y, YS)) -> MARK(Y) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(tail(X)) -> MARK(X) MARK(repItems(X)) -> A__REPITEMS(mark(X)) A__REPITEMS(cons(X, XS)) -> MARK(X) MARK(repItems(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(repItems(X)) -> A__REPITEMS(mark(X)) MARK(repItems(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__INCR(x_1)) = x_1 POL(A__ODDNS) = 0 POL(A__REPITEMS(x_1)) = 2*x_1 POL(A__TAKE(x_1, x_2)) = x_1 + x_2 POL(MARK(x_1)) = x_1 POL(a__incr(x_1)) = 2*x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2 + 2*x_1 POL(a__tail(x_1)) = 2*x_1 POL(a__take(x_1, x_2)) = x_1 + x_2 POL(a__zip(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2 + 2*x_1 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 POL(take(x_1, x_2)) = x_1 + x_2 POL(zip(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(tail(X)) -> MARK(X) A__REPITEMS(cons(X, XS)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(tail(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(tail(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__INCR(x_1)) = x_1 POL(A__ODDNS) = 0 POL(A__TAKE(x_1, x_2)) = 2*x_1 + x_2 POL(MARK(x_1)) = x_1 POL(a__incr(x_1)) = x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = 1 + 2*x_1 POL(a__take(x_1, x_2)) = 2*x_1 + 2*x_2 POL(a__zip(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = x_1 POL(tail(x_1)) = 1 + 2*x_1 POL(take(x_1, x_2)) = 2*x_1 + 2*x_2 POL(zip(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: A__TAKE(s(N), cons(X, XS)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__INCR(x_1)) = 2*x_1 POL(A__ODDNS) = 0 POL(A__TAKE(x_1, x_2)) = 1 + x_1 + 2*x_2 POL(MARK(x_1)) = x_1 POL(a__incr(x_1)) = 2*x_1 POL(a__oddNs) = 0 POL(a__pairNs) = 0 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = 2*x_1 POL(a__take(x_1, x_2)) = 1 + x_1 + 2*x_2 POL(a__zip(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 0 POL(pair(x_1, x_2)) = x_1 + x_2 POL(pairNs) = 0 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = 2*x_1 POL(tail(x_1)) = 2*x_1 POL(take(x_1, x_2)) = 1 + x_1 + 2*x_2 POL(zip(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(take(X1, X2)) -> A__TAKE(mark(X1), mark(X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> MARK(X) MARK(oddNs) -> A__ODDNS A__ODDNS -> A__INCR(a__pairNs) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(oddNs) -> A__ODDNS Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__INCR(x_1)) = x_1 POL(A__ODDNS) = 2 POL(MARK(x_1)) = 2*x_1 POL(a__incr(x_1)) = x_1 POL(a__oddNs) = 2 POL(a__pairNs) = 2 POL(a__repItems(x_1)) = 2*x_1 POL(a__tail(x_1)) = 2*x_1 POL(a__take(x_1, x_2)) = x_1 + x_2 POL(a__zip(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(oddNs) = 2 POL(pair(x_1, x_2)) = x_1 + x_2 POL(pairNs) = 2 POL(repItems(x_1)) = 2*x_1 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 POL(take(x_1, x_2)) = x_1 + x_2 POL(zip(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> MARK(X) A__ODDNS -> A__INCR(a__pairNs) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, XS)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__INCR(cons(X, XS)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X1) MARK(pair(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__INCR_1(x_1) ) = 2x_1 + 2 POL( mark_1(x_1) ) = x_1 POL( pairNs ) = 1 POL( a__pairNs ) = 1 POL( incr_1(x_1) ) = 2x_1 POL( a__incr_1(x_1) ) = 2x_1 POL( oddNs ) = 2 POL( a__oddNs ) = 2 POL( take_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( a__take_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( zip_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( a__zip_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( tail_1(x_1) ) = 0 POL( a__tail_1(x_1) ) = max{0, -2} POL( repItems_1(x_1) ) = x_1 + 2 POL( a__repItems_1(x_1) ) = x_1 + 2 POL( cons_2(x_1, x_2) ) = 2x_1 + 1 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 POL( nil ) = 2 POL( pair_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( MARK_1(x_1) ) = x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__incr(X) -> incr(X) a__oddNs -> oddNs a__oddNs -> a__incr(a__pairNs) a__pairNs -> cons(0, incr(oddNs)) a__pairNs -> pairNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(incr(X)) -> MARK(X) The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(incr(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(incr(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (38) YES