/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220incr : [o] --> o a!6220!6220oddNs : [] --> o a!6220!6220pairNs : [] --> o a!6220!6220repItems : [o] --> o a!6220!6220tail : [o] --> o a!6220!6220take : [o * o] --> o a!6220!6220zip : [o * o] --> o cons : [o * o] --> o incr : [o] --> o mark : [o] --> o nil : [] --> o oddNs : [] --> o pair : [o * o] --> o pairNs : [] --> o repItems : [o] --> o s : [o] --> o tail : [o] --> o take : [o * o] --> o zip : [o * o] --> o a!6220!6220pairNs => cons(0, incr(oddNs)) a!6220!6220oddNs => a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) a!6220!6220take(0, X) => nil a!6220!6220take(s(X), cons(Y, Z)) => cons(mark(Y), take(X, Z)) a!6220!6220zip(nil, X) => nil a!6220!6220zip(X, nil) => nil a!6220!6220zip(cons(X, Y), cons(Z, U)) => cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220tail(cons(X, Y)) => mark(Y) a!6220!6220repItems(nil) => nil a!6220!6220repItems(cons(X, Y)) => cons(mark(X), cons(X, repItems(Y))) mark(pairNs) => a!6220!6220pairNs mark(incr(X)) => a!6220!6220incr(mark(X)) mark(oddNs) => a!6220!6220oddNs mark(take(X, Y)) => a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) => a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) => a!6220!6220tail(mark(X)) mark(repItems(X)) => a!6220!6220repItems(mark(X)) mark(cons(X, Y)) => cons(mark(X), Y) mark(0) => 0 mark(s(X)) => s(mark(X)) mark(nil) => nil mark(pair(X, Y)) => pair(mark(X), mark(Y)) a!6220!6220pairNs => pairNs a!6220!6220incr(X) => incr(X) a!6220!6220oddNs => oddNs a!6220!6220take(X, Y) => take(X, Y) a!6220!6220zip(X, Y) => zip(X, Y) a!6220!6220tail(X) => tail(X) a!6220!6220repItems(X) => repItems(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(0, X) >? nil a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(nil, X) >? nil a!6220!6220zip(X, nil) >? nil a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220tail(cons(X, Y)) >? mark(Y) a!6220!6220repItems(nil) >? nil a!6220!6220repItems(cons(X, Y)) >? cons(mark(X), cons(X, repItems(Y))) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(repItems(X)) >? a!6220!6220repItems(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) a!6220!6220repItems(X) >? repItems(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220repItems = \y0.2y0 a!6220!6220tail = \y0.y0 a!6220!6220take = \y0y1.y0 + 2y1 a!6220!6220zip = \y0y1.1 + y0 + y1 cons = \y0y1.y1 + 2y0 incr = \y0.2y0 mark = \y0.y0 nil = 0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 repItems = \y0.2y0 s = \y0.y0 tail = \y0.y0 take = \y0y1.y0 + 2y1 zip = \y0y1.1 + y0 + y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(0, _x0)]] = 2x0 >= 0 = [[nil]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = x0 + 2x2 + 4x1 >= x0 + 2x1 + 2x2 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(nil, _x0)]] = 1 + x0 > 0 = [[nil]] [[a!6220!6220zip(_x0, nil)]] = 1 + x0 > 0 = [[nil]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 1 + x1 + x3 + 2x0 + 2x2 >= 1 + x1 + x3 + 2x0 + 2x2 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[a!6220!6220tail(cons(_x0, _x1))]] = x1 + 2x0 >= x1 = [[mark(_x1)]] [[a!6220!6220repItems(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220repItems(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(mark(_x0), cons(_x0, repItems(_x1)))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = x0 >= x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(repItems(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220repItems(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(pair(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = x0 + 2x1 >= x0 + 2x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = 1 + x0 + x1 >= 1 + x0 + x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] [[a!6220!6220repItems(_x0)]] = 2x0 >= 2x0 = [[repItems(_x0)]] We can thus remove the following rules: a!6220!6220zip(nil, X) => nil a!6220!6220zip(X, nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(0, X) >? nil a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220tail(cons(X, Y)) >? mark(Y) a!6220!6220repItems(nil) >? nil a!6220!6220repItems(cons(X, Y)) >? cons(mark(X), cons(X, repItems(Y))) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(repItems(X)) >? a!6220!6220repItems(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) a!6220!6220repItems(X) >? repItems(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220repItems = \y0.2y0 a!6220!6220tail = \y0.2 + y0 a!6220!6220take = \y0y1.y0 + y1 a!6220!6220zip = \y0y1.y0 + y1 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.y0 nil = 0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 repItems = \y0.2y0 s = \y0.y0 tail = \y0.2 + y0 take = \y0y1.y0 + y1 zip = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(0, _x0)]] = x0 >= 0 = [[nil]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = x0 + x1 + x2 + x3 >= x0 + x1 + x2 + x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[a!6220!6220tail(cons(_x0, _x1))]] = 2 + x0 + x1 > x1 = [[mark(_x1)]] [[a!6220!6220repItems(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220repItems(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), cons(_x0, repItems(_x1)))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = 2 + x0 >= 2 + x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(repItems(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220repItems(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(pair(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = 2 + x0 >= 2 + x0 = [[tail(_x0)]] [[a!6220!6220repItems(_x0)]] = 2x0 >= 2x0 = [[repItems(_x0)]] We can thus remove the following rules: a!6220!6220tail(cons(X, Y)) => mark(Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(0, X) >? nil a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220repItems(nil) >? nil a!6220!6220repItems(cons(X, Y)) >? cons(mark(X), cons(X, repItems(Y))) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(repItems(X)) >? a!6220!6220repItems(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) a!6220!6220repItems(X) >? repItems(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220repItems = \y0.2y0 a!6220!6220tail = \y0.y0 a!6220!6220take = \y0y1.1 + y1 + 2y0 a!6220!6220zip = \y0y1.y0 + 2y1 cons = \y0y1.y1 + 2y0 incr = \y0.2y0 mark = \y0.y0 nil = 0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 repItems = \y0.2y0 s = \y0.2y0 tail = \y0.y0 take = \y0y1.1 + y1 + 2y0 zip = \y0y1.y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(0, _x0)]] = 1 + x0 > 0 = [[nil]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = 1 + x2 + 2x1 + 4x0 >= 1 + x2 + 2x0 + 2x1 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = x1 + 2x0 + 2x3 + 4x2 >= x1 + 2x0 + 2x2 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[a!6220!6220repItems(nil)]] = 0 >= 0 = [[nil]] [[a!6220!6220repItems(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(mark(_x0), cons(_x0, repItems(_x1)))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = x0 >= x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(repItems(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220repItems(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(pair(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = x0 + 2x1 >= x0 + 2x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] [[a!6220!6220repItems(_x0)]] = 2x0 >= 2x0 = [[repItems(_x0)]] We can thus remove the following rules: a!6220!6220take(0, X) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220repItems(nil) >? nil a!6220!6220repItems(cons(X, Y)) >? cons(mark(X), cons(X, repItems(Y))) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(repItems(X)) >? a!6220!6220repItems(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) a!6220!6220repItems(X) >? repItems(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220repItems = \y0.2y0 a!6220!6220tail = \y0.y0 a!6220!6220take = \y0y1.y0 + y1 a!6220!6220zip = \y0y1.y0 + 2y1 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.y0 nil = 2 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 repItems = \y0.2y0 s = \y0.y0 tail = \y0.y0 take = \y0y1.y0 + y1 zip = \y0y1.y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = x0 + x1 + 2x2 + 2x3 >= x0 + x1 + x2 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[a!6220!6220repItems(nil)]] = 4 > 2 = [[nil]] [[a!6220!6220repItems(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), cons(_x0, repItems(_x1)))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = x0 >= x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(repItems(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220repItems(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(nil)]] = 2 >= 2 = [[nil]] [[mark(pair(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = x0 + 2x1 >= x0 + 2x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] [[a!6220!6220repItems(_x0)]] = 2x0 >= 2x0 = [[repItems(_x0)]] We can thus remove the following rules: a!6220!6220repItems(nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220repItems(cons(X, Y)) >? cons(mark(X), cons(X, repItems(Y))) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(repItems(X)) >? a!6220!6220repItems(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) a!6220!6220repItems(X) >? repItems(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220repItems = \y0.2 + 3y0 a!6220!6220tail = \y0.y0 a!6220!6220take = \y0y1.y0 + 2y1 a!6220!6220zip = \y0y1.2y0 + 2y1 cons = \y0y1.y1 + 2y0 incr = \y0.2y0 mark = \y0.2y0 nil = 2 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 repItems = \y0.2 + 3y0 s = \y0.y0 tail = \y0.y0 take = \y0y1.y0 + 2y1 zip = \y0y1.2y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = x0 + 2x2 + 4x1 >= x0 + 2x2 + 4x1 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2x1 + 2x3 + 4x0 + 4x2 >= 2x1 + 2x3 + 4x0 + 4x2 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[a!6220!6220repItems(cons(_x0, _x1))]] = 2 + 3x1 + 6x0 >= 2 + 3x1 + 6x0 = [[cons(mark(_x0), cons(_x0, repItems(_x1)))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = 4x0 + 4x1 >= 4x0 + 4x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(repItems(_x0))]] = 4 + 6x0 > 2 + 6x0 = [[a!6220!6220repItems(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x1 + 4x0 >= x1 + 4x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(nil)]] = 4 > 2 = [[nil]] [[mark(pair(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = x0 + 2x1 >= x0 + 2x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] [[a!6220!6220repItems(_x0)]] = 2 + 3x0 >= 2 + 3x0 = [[repItems(_x0)]] We can thus remove the following rules: mark(repItems(X)) => a!6220!6220repItems(mark(X)) mark(nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) a!6220!6220repItems(cons(X, Y)) >? cons(mark(X), cons(X, repItems(Y))) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) a!6220!6220repItems(X) >? repItems(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220repItems = \y0.3 + 3y0 a!6220!6220tail = \y0.2y0 a!6220!6220take = \y0y1.y0 + 2y1 a!6220!6220zip = \y0y1.2y0 + 2y1 cons = \y0y1.y1 + 2y0 incr = \y0.2y0 mark = \y0.2y0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 repItems = \y0.y0 s = \y0.y0 tail = \y0.2y0 take = \y0y1.y0 + 2y1 zip = \y0y1.2y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = x0 + 2x2 + 4x1 >= x0 + 2x2 + 4x1 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2x1 + 2x3 + 4x0 + 4x2 >= 2x1 + 2x3 + 4x0 + 4x2 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[a!6220!6220repItems(cons(_x0, _x1))]] = 3 + 3x1 + 6x0 > x1 + 6x0 = [[cons(mark(_x0), cons(_x0, repItems(_x1)))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = 4x0 + 4x1 >= 4x0 + 4x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x1 + 4x0 >= x1 + 4x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(pair(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = x0 + 2x1 >= x0 + 2x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = 2x0 >= 2x0 = [[tail(_x0)]] [[a!6220!6220repItems(_x0)]] = 3 + 3x0 > x0 = [[repItems(_x0)]] We can thus remove the following rules: a!6220!6220repItems(cons(X, Y)) => cons(mark(X), cons(X, repItems(Y))) a!6220!6220repItems(X) => repItems(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220tail = \y0.1 + y0 a!6220!6220take = \y0y1.2y0 + 2y1 a!6220!6220zip = \y0y1.2y0 + 2y1 cons = \y0y1.y0 + y1 incr = \y0.2y0 mark = \y0.2y0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 s = \y0.y0 tail = \y0.1 + y0 take = \y0y1.2y0 + 2y1 zip = \y0y1.2y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = 2x0 + 2x1 + 2x2 >= 2x0 + 2x1 + 2x2 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2x0 + 2x1 + 2x2 + 2x3 >= 2x0 + 2x1 + 2x2 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = 4x0 + 4x1 >= 4x0 + 4x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = 4x0 + 4x1 >= 4x0 + 4x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(tail(_x0))]] = 2 + 2x0 > 1 + 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(pair(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = 1 + x0 >= 1 + x0 = [[tail(_x0)]] We can thus remove the following rules: mark(tail(X)) => a!6220!6220tail(mark(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220tail = \y0.3 + y0 a!6220!6220take = \y0y1.y0 + y1 a!6220!6220zip = \y0y1.y0 + y1 cons = \y0y1.y0 + 2y1 incr = \y0.2y0 mark = \y0.y0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 s = \y0.2y0 tail = \y0.y0 take = \y0y1.y0 + y1 zip = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = x1 + 2x0 + 2x2 >= x1 + 2x0 + 2x2 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = x0 + x2 + 2x1 + 2x3 >= x0 + x2 + 2x1 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(cons(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(pair(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[zip(_x0, _x1)]] [[a!6220!6220tail(_x0)]] = 3 + x0 > x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220tail(X) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220take(s(X), cons(Y, Z)) >? cons(mark(Y), take(X, Z)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220take(X, Y) >? take(X, Y) a!6220!6220zip(X, Y) >? zip(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220take = \y0y1.2 + y0 + 2y1 a!6220!6220zip = \y0y1.2y0 + 2y1 cons = \y0y1.y0 + y1 incr = \y0.2y0 mark = \y0.2y0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 s = \y0.y0 take = \y0y1.1 + y0 + 2y1 zip = \y0y1.2y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220take(s(_x0), cons(_x1, _x2))]] = 2 + x0 + 2x1 + 2x2 > 1 + x0 + 2x1 + 2x2 = [[cons(mark(_x1), take(_x0, _x2))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2x0 + 2x1 + 2x2 + 2x3 >= 2x0 + 2x1 + 2x2 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = 2 + 2x0 + 4x1 >= 2 + 2x0 + 4x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = 4x0 + 4x1 >= 4x0 + 4x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(pair(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220take(_x0, _x1)]] = 2 + x0 + 2x1 > 1 + x0 + 2x1 = [[take(_x0, _x1)]] [[a!6220!6220zip(_x0, _x1)]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[zip(_x0, _x1)]] We can thus remove the following rules: a!6220!6220take(s(X), cons(Y, Z)) => cons(mark(Y), take(X, Z)) a!6220!6220take(X, Y) => take(X, Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(take(X, Y)) >? a!6220!6220take(mark(X), mark(Y)) mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220zip(X, Y) >? zip(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220take = \y0y1.y0 + y1 a!6220!6220zip = \y0y1.y0 + y1 cons = \y0y1.y0 + 2y1 incr = \y0.2y0 mark = \y0.y0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 s = \y0.y0 take = \y0y1.3 + 3y0 + 3y1 zip = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 4x1 >= x0 + 4x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = x0 + x2 + 2x1 + 2x3 >= x0 + x2 + 2x1 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(take(_x0, _x1))]] = 3 + 3x0 + 3x1 > x0 + x1 = [[a!6220!6220take(mark(_x0), mark(_x1))]] [[mark(zip(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(cons(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(pair(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220zip(_x0, _x1)]] = x0 + x1 >= x0 + x1 = [[zip(_x0, _x1)]] We can thus remove the following rules: mark(take(X, Y)) => a!6220!6220take(mark(X), mark(Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(pair(X, Y)) >? pair(mark(X), mark(Y)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs a!6220!6220zip(X, Y) >? zip(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220zip = \y0y1.2 + 2y0 + 2y1 cons = \y0y1.y0 + y1 incr = \y0.2y0 mark = \y0.2y0 oddNs = 0 pair = \y0y1.1 + y0 + y1 pairNs = 0 s = \y0.y0 zip = \y0y1.1 + 2y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2 + 2x0 + 2x1 + 2x2 + 2x3 >= 2 + 2x0 + 2x1 + 2x2 + 2x3 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(zip(_x0, _x1))]] = 2 + 4x0 + 4x1 >= 2 + 4x0 + 4x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x1 + 2x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(pair(_x0, _x1))]] = 2 + 2x0 + 2x1 > 1 + 2x0 + 2x1 = [[pair(mark(_x0), mark(_x1))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] [[a!6220!6220zip(_x0, _x1)]] = 2 + 2x0 + 2x1 > 1 + 2x0 + 2x1 = [[zip(_x0, _x1)]] We can thus remove the following rules: mark(pair(X, Y)) => pair(mark(X), mark(Y)) a!6220!6220zip(X, Y) => zip(X, Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220pairNs >? cons(0, incr(oddNs)) a!6220!6220oddNs >? a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220zip(cons(X, Y), cons(Z, U)) >? cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(pairNs) >? a!6220!6220pairNs mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(oddNs) >? a!6220!6220oddNs mark(zip(X, Y)) >? a!6220!6220zip(mark(X), mark(Y)) mark(cons(X, Y)) >? cons(mark(X), Y) mark(0) >? 0 mark(s(X)) >? s(mark(X)) a!6220!6220pairNs >? pairNs a!6220!6220incr(X) >? incr(X) a!6220!6220oddNs >? oddNs We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220oddNs = 0 a!6220!6220pairNs = 0 a!6220!6220zip = \y0y1.3 + 2y0 + 2y1 cons = \y0y1.y1 + 2y0 incr = \y0.2y0 mark = \y0.2y0 oddNs = 0 pair = \y0y1.y0 + y1 pairNs = 0 s = \y0.y0 zip = \y0y1.2 + 2y0 + 2y1 Using this interpretation, the requirements translate to: [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220zip(cons(_x0, _x1), cons(_x2, _x3))]] = 3 + 2x1 + 2x3 + 4x0 + 4x2 > 2 + 2x1 + 2x3 + 4x0 + 4x2 = [[cons(pair(mark(_x0), mark(_x2)), zip(_x1, _x3))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 0 >= 0 = [[a!6220!6220oddNs]] [[mark(zip(_x0, _x1))]] = 4 + 4x0 + 4x1 > 3 + 4x0 + 4x1 = [[a!6220!6220zip(mark(_x0), mark(_x1))]] [[mark(cons(_x0, _x1))]] = 2x1 + 4x0 >= x1 + 4x0 = [[cons(mark(_x0), _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 0 >= 0 = [[oddNs]] We can thus remove the following rules: a!6220!6220zip(cons(X, Y), cons(Z, U)) => cons(pair(mark(X), mark(Z)), zip(Y, U)) mark(zip(X, Y)) => a!6220!6220zip(mark(X), mark(Y)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] a!6220!6220oddNs# =#> a!6220!6220incr#(a!6220!6220pairNs) 1] a!6220!6220oddNs# =#> a!6220!6220pairNs# 2] a!6220!6220incr#(cons(X, Y)) =#> mark#(X) 3] mark#(pairNs) =#> a!6220!6220pairNs# 4] mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) 5] mark#(incr(X)) =#> mark#(X) 6] mark#(oddNs) =#> a!6220!6220oddNs# 7] mark#(cons(X, Y)) =#> mark#(X) 8] mark#(s(X)) =#> mark#(X) Rules R_0: a!6220!6220pairNs => cons(0, incr(oddNs)) a!6220!6220oddNs => a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) mark(pairNs) => a!6220!6220pairNs mark(incr(X)) => a!6220!6220incr(mark(X)) mark(oddNs) => a!6220!6220oddNs mark(cons(X, Y)) => cons(mark(X), Y) mark(0) => 0 mark(s(X)) => s(mark(X)) a!6220!6220pairNs => pairNs a!6220!6220incr(X) => incr(X) a!6220!6220oddNs => oddNs Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 2 * 1 : * 2 : 3, 4, 5, 6, 7, 8 * 3 : * 4 : 2 * 5 : 3, 4, 5, 6, 7, 8 * 6 : 0, 1 * 7 : 3, 4, 5, 6, 7, 8 * 8 : 3, 4, 5, 6, 7, 8 This graph has the following strongly connected components: P_1: a!6220!6220oddNs# =#> a!6220!6220incr#(a!6220!6220pairNs) a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(oddNs) =#> a!6220!6220oddNs# mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= a!6220!6220pairNs => cons(0, incr(oddNs)) a!6220!6220oddNs => a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) mark(pairNs) => a!6220!6220pairNs mark(incr(X)) => a!6220!6220incr(mark(X)) mark(oddNs) => a!6220!6220oddNs mark(cons(X, Y)) => cons(mark(X), Y) mark(s(X)) => s(mark(X)) a!6220!6220pairNs => pairNs a!6220!6220incr(X) => incr(X) a!6220!6220oddNs => oddNs By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220oddNs# >? a!6220!6220incr#(a!6220!6220pairNs) a!6220!6220incr#(cons(X, Y)) >? mark#(X) mark#(incr(X)) >? a!6220!6220incr#(mark(X)) mark#(incr(X)) >? mark#(X) mark#(oddNs) >? a!6220!6220oddNs# mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220pairNs >= cons(0, incr(oddNs)) a!6220!6220oddNs >= a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >= cons(s(mark(X)), incr(Y)) mark(pairNs) >= a!6220!6220pairNs mark(incr(X)) >= a!6220!6220incr(mark(X)) mark(oddNs) >= a!6220!6220oddNs mark(cons(X, Y)) >= cons(mark(X), Y) mark(s(X)) >= s(mark(X)) a!6220!6220pairNs >= pairNs a!6220!6220incr(X) >= incr(X) a!6220!6220oddNs >= oddNs We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220incr# = \y0.2y0 a!6220!6220oddNs = 1 a!6220!6220oddNs# = 0 a!6220!6220pairNs = 0 cons = \y0y1.2y0 incr = \y0.2y0 mark = \y0.y0 mark# = \y0.2y0 oddNs = 1 pairNs = 0 s = \y0.2y0 Using this interpretation, the requirements translate to: [[a!6220!6220oddNs#]] = 0 >= 0 = [[a!6220!6220incr#(a!6220!6220pairNs)]] [[a!6220!6220incr#(cons(_x0, _x1))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(incr(_x0))]] = 4x0 >= 2x0 = [[a!6220!6220incr#(mark(_x0))]] [[mark#(incr(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(oddNs)]] = 2 > 0 = [[a!6220!6220oddNs#]] [[mark#(cons(_x0, _x1))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 4x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 1 >= 0 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 4x0 >= 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 1 >= 1 = [[a!6220!6220oddNs]] [[mark(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 1 >= 1 = [[oddNs]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: a!6220!6220oddNs# =#> a!6220!6220incr#(a!6220!6220pairNs) a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1 * 1 : 2, 3, 4, 5 * 2 : 1 * 3 : 2, 3, 4, 5 * 4 : 2, 3, 4, 5 * 5 : 2, 3, 4, 5 This graph has the following strongly connected components: P_3: a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_2, R_1, m, f) by (P_3, R_1, m, f). Thus, the original system is terminating if (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220incr#(cons(X, Y)) >? mark#(X) mark#(incr(X)) >? a!6220!6220incr#(mark(X)) mark#(incr(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) mark#(s(X)) >? mark#(X) a!6220!6220pairNs >= cons(0, incr(oddNs)) a!6220!6220oddNs >= a!6220!6220incr(a!6220!6220pairNs) a!6220!6220incr(cons(X, Y)) >= cons(s(mark(X)), incr(Y)) mark(pairNs) >= a!6220!6220pairNs mark(incr(X)) >= a!6220!6220incr(mark(X)) mark(oddNs) >= a!6220!6220oddNs mark(cons(X, Y)) >= cons(mark(X), Y) mark(s(X)) >= s(mark(X)) a!6220!6220pairNs >= pairNs a!6220!6220incr(X) >= incr(X) a!6220!6220oddNs >= oddNs We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2 + 2y0 a!6220!6220incr# = \y0.2y0 a!6220!6220oddNs = 2 a!6220!6220pairNs = 0 cons = \y0y1.y0 incr = \y0.2 + 2y0 mark = \y0.2y0 mark# = \y0.2y0 oddNs = 2 pairNs = 0 s = \y0.1 + y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr#(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(incr(_x0))]] = 4 + 4x0 > 4x0 = [[a!6220!6220incr#(mark(_x0))]] [[mark#(incr(_x0))]] = 4 + 4x0 > 2x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 2 + 2x0 > 2x0 = [[mark#(_x0)]] [[a!6220!6220pairNs]] = 0 >= 0 = [[cons(0, incr(oddNs))]] [[a!6220!6220oddNs]] = 2 >= 2 = [[a!6220!6220incr(a!6220!6220pairNs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2 + 2x0 >= 1 + 2x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(pairNs)]] = 0 >= 0 = [[a!6220!6220pairNs]] [[mark(incr(_x0))]] = 4 + 4x0 >= 2 + 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(oddNs)]] = 4 >= 2 = [[a!6220!6220oddNs]] [[mark(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[cons(mark(_x0), _x1)]] [[mark(s(_x0))]] = 2 + 2x0 >= 1 + 2x0 = [[s(mark(_x0))]] [[a!6220!6220pairNs]] = 0 >= 0 = [[pairNs]] [[a!6220!6220incr(_x0)]] = 2 + 2x0 >= 2 + 2x0 = [[incr(_x0)]] [[a!6220!6220oddNs]] = 2 >= 2 = [[oddNs]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_1, minimal, formative) by (P_4, R_1, minimal, formative), where P_4 consists of: a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) Thus, the original system is terminating if (P_4, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1 * 1 : 1 This graph has the following strongly connected components: P_5: mark#(cons(X, Y)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_4, R_1, m, f) by (P_5, R_1, m, f). Thus, the original system is terminating if (P_5, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(cons(X, Y))) = cons(X, Y) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.