/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. a : [] --> o active : [o] --> o b : [] --> o f : [o * o * o] --> o mark : [o] --> o active(f(a, X, X)) => mark(f(X, b, b)) active(b) => mark(a) mark(f(X, Y, Z)) => active(f(X, mark(Y), Z)) mark(a) => active(a) mark(b) => active(b) f(mark(X), Y, Z) => f(X, Y, Z) f(X, mark(Y), Z) => f(X, Y, Z) f(X, Y, mark(Z)) => f(X, Y, Z) f(active(X), Y, Z) => f(X, Y, Z) f(X, active(Y), Z) => f(X, Y, Z) f(X, Y, active(Z)) => f(X, Y, Z) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, all): Dependency Pairs P_0: 0] active#(f(a, X, X)) =#> mark#(f(X, b, b)) 1] active#(f(a, X, X)) =#> f#(X, b, b) 2] active#(b) =#> mark#(a) 3] mark#(f(X, Y, Z)) =#> active#(f(X, mark(Y), Z)) 4] mark#(f(X, Y, Z)) =#> f#(X, mark(Y), Z) 5] mark#(f(X, Y, Z)) =#> mark#(Y) 6] mark#(a) =#> active#(a) 7] mark#(b) =#> active#(b) 8] f#(mark(X), Y, Z) =#> f#(X, Y, Z) 9] f#(X, mark(Y), Z) =#> f#(X, Y, Z) 10] f#(X, Y, mark(Z)) =#> f#(X, Y, Z) 11] f#(active(X), Y, Z) =#> f#(X, Y, Z) 12] f#(X, active(Y), Z) =#> f#(X, Y, Z) 13] f#(X, Y, active(Z)) =#> f#(X, Y, Z) Rules R_0: active(f(a, X, X)) => mark(f(X, b, b)) active(b) => mark(a) mark(f(X, Y, Z)) => active(f(X, mark(Y), Z)) mark(a) => active(a) mark(b) => active(b) f(mark(X), Y, Z) => f(X, Y, Z) f(X, mark(Y), Z) => f(X, Y, Z) f(X, Y, mark(Z)) => f(X, Y, Z) f(active(X), Y, Z) => f(X, Y, Z) f(X, active(Y), Z) => f(X, Y, Z) f(X, Y, active(Z)) => f(X, Y, Z) Thus, the original system is terminating if (P_0, R_0, minimal, all) is finite. We consider the dependency pair problem (P_0, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 3, 4, 5 * 1 : 8, 11 * 2 : 6 * 3 : 0, 1 * 4 : 8, 9, 10, 11, 12, 13 * 5 : 3, 4, 5, 6, 7 * 6 : * 7 : 2 * 8 : 8, 9, 10, 11, 12, 13 * 9 : 8, 9, 10, 11, 12, 13 * 10 : 8, 9, 10, 11, 12, 13 * 11 : 8, 9, 10, 11, 12, 13 * 12 : 8, 9, 10, 11, 12, 13 * 13 : 8, 9, 10, 11, 12, 13 This graph has the following strongly connected components: P_1: active#(f(a, X, X)) =#> mark#(f(X, b, b)) mark#(f(X, Y, Z)) =#> active#(f(X, mark(Y), Z)) mark#(f(X, Y, Z)) =#> mark#(Y) P_2: f#(mark(X), Y, Z) =#> f#(X, Y, Z) f#(X, mark(Y), Z) =#> f#(X, Y, Z) f#(X, Y, mark(Z)) =#> f#(X, Y, Z) f#(active(X), Y, Z) =#> f#(X, Y, Z) f#(X, active(Y), Z) =#> f#(X, Y, Z) f#(X, Y, active(Z)) =#> f#(X, Y, Z) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_2, R_0, minimal, all) is finite. We consider the dependency pair problem (P_2, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(f#) = 1 Thus, we can orient the dependency pairs as follows: nu(f#(mark(X), Y, Z)) = mark(X) |> X = nu(f#(X, Y, Z)) nu(f#(X, mark(Y), Z)) = X = X = nu(f#(X, Y, Z)) nu(f#(X, Y, mark(Z))) = X = X = nu(f#(X, Y, Z)) nu(f#(active(X), Y, Z)) = active(X) |> X = nu(f#(X, Y, Z)) nu(f#(X, active(Y), Z)) = X = X = nu(f#(X, Y, Z)) nu(f#(X, Y, active(Z))) = X = X = nu(f#(X, Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_3, R_0, minimal, f), where P_3 contains: f#(X, mark(Y), Z) =#> f#(X, Y, Z) f#(X, Y, mark(Z)) =#> f#(X, Y, Z) f#(X, active(Y), Z) =#> f#(X, Y, Z) f#(X, Y, active(Z)) =#> f#(X, Y, Z) Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_3, R_0, minimal, all) is finite. We consider the dependency pair problem (P_3, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(f#) = 2 Thus, we can orient the dependency pairs as follows: nu(f#(X, mark(Y), Z)) = mark(Y) |> Y = nu(f#(X, Y, Z)) nu(f#(X, Y, mark(Z))) = Y = Y = nu(f#(X, Y, Z)) nu(f#(X, active(Y), Z)) = active(Y) |> Y = nu(f#(X, Y, Z)) nu(f#(X, Y, active(Z))) = Y = Y = nu(f#(X, Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by (P_4, R_0, minimal, f), where P_4 contains: f#(X, Y, mark(Z)) =#> f#(X, Y, Z) f#(X, Y, active(Z)) =#> f#(X, Y, Z) Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_4, R_0, minimal, all) is finite. We consider the dependency pair problem (P_4, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(f#) = 3 Thus, we can orient the dependency pairs as follows: nu(f#(X, Y, mark(Z))) = mark(Z) |> Z = nu(f#(X, Y, Z)) nu(f#(X, Y, active(Z))) = active(Z) |> Z = nu(f#(X, Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_4, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, all) is finite. We consider the dependency pair problem (P_1, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: active#(f(a, X, X)) >? mark#(f(X, b, b)) mark#(f(X, Y, Z)) >? active#(f(X, mark(Y), Z)) mark#(f(X, Y, Z)) >? mark#(Y) active(f(a, X, X)) >= mark(f(X, b, b)) active(b) >= mark(a) mark(f(X, Y, Z)) >= active(f(X, mark(Y), Z)) mark(a) >= active(a) mark(b) >= active(b) f(mark(X), Y, Z) >= f(X, Y, Z) f(X, mark(Y), Z) >= f(X, Y, Z) f(X, Y, mark(Z)) >= f(X, Y, Z) f(active(X), Y, Z) >= f(X, Y, Z) f(X, active(Y), Z) >= f(X, Y, Z) f(X, Y, active(Z)) >= f(X, Y, Z) We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: active#(x_1) = active#() This leaves the following ordering requirements: active#(f(a, X, X)) >= mark#(f(X, b, b)) mark#(f(X, Y, Z)) >= active#(f(X, mark(Y), Z)) mark#(f(X, Y, Z)) > mark#(Y) f(mark(X), Y, Z) >= f(X, Y, Z) f(X, mark(Y), Z) >= f(X, Y, Z) f(X, Y, mark(Z)) >= f(X, Y, Z) f(active(X), Y, Z) >= f(X, Y, Z) f(X, active(Y), Z) >= f(X, Y, Z) f(X, Y, active(Z)) >= f(X, Y, Z) The following interpretation satisfies the requirements: a = 0 active = \y0.y0 active# = \y0.1 b = 0 f = \y0y1y2.1 + 2y1 mark = \y0.y0 mark# = \y0.y0 Using this interpretation, the requirements translate to: [[active#(f(a, _x0, _x0))]] = 1 >= 1 = [[mark#(f(_x0, b, b))]] [[mark#(f(_x0, _x1, _x2))]] = 1 + 2x1 >= 1 = [[active#(f(_x0, mark(_x1), _x2))]] [[mark#(f(_x0, _x1, _x2))]] = 1 + 2x1 > x1 = [[mark#(_x1)]] [[f(mark(_x0), _x1, _x2)]] = 1 + 2x1 >= 1 + 2x1 = [[f(_x0, _x1, _x2)]] [[f(_x0, mark(_x1), _x2)]] = 1 + 2x1 >= 1 + 2x1 = [[f(_x0, _x1, _x2)]] [[f(_x0, _x1, mark(_x2))]] = 1 + 2x1 >= 1 + 2x1 = [[f(_x0, _x1, _x2)]] [[f(active(_x0), _x1, _x2)]] = 1 + 2x1 >= 1 + 2x1 = [[f(_x0, _x1, _x2)]] [[f(_x0, active(_x1), _x2)]] = 1 + 2x1 >= 1 + 2x1 = [[f(_x0, _x1, _x2)]] [[f(_x0, _x1, active(_x2))]] = 1 + 2x1 >= 1 + 2x1 = [[f(_x0, _x1, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, all) by (P_5, R_0, minimal, all), where P_5 consists of: active#(f(a, X, X)) =#> mark#(f(X, b, b)) mark#(f(X, Y, Z)) =#> active#(f(X, mark(Y), Z)) Thus, the original system is terminating if (P_5, R_0, minimal, all) is finite. We consider the dependency pair problem (P_5, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: active#(f(a, X, X)) >? mark#(f(X, b, b)) mark#(f(X, Y, Z)) >? active#(f(X, mark(Y), Z)) active(f(a, X, X)) >= mark(f(X, b, b)) active(b) >= mark(a) mark(f(X, Y, Z)) >= active(f(X, mark(Y), Z)) mark(a) >= active(a) mark(b) >= active(b) f(mark(X), Y, Z) >= f(X, Y, Z) f(X, mark(Y), Z) >= f(X, Y, Z) f(X, Y, mark(Z)) >= f(X, Y, Z) f(active(X), Y, Z) >= f(X, Y, Z) f(X, active(Y), Z) >= f(X, Y, Z) f(X, Y, active(Z)) >= f(X, Y, Z) We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: f(x_1,x_2,x_3) = f(x_1x_3) This leaves the following ordering requirements: active#(f(a, X, X)) > mark#(f(X, b, b)) mark#(f(X, Y, Z)) >= active#(f(X, mark(Y), Z)) f(mark(X), Y, Z) >= f(X, Y, Z) f(X, mark(Y), Z) >= f(X, Y, Z) f(X, Y, mark(Z)) >= f(X, Y, Z) f(active(X), Y, Z) >= f(X, Y, Z) f(X, active(Y), Z) >= f(X, Y, Z) f(X, Y, active(Z)) >= f(X, Y, Z) The following interpretation satisfies the requirements: a = 2 active = \y0.3y0 active# = \y0.y0 b = 0 f = \y0y1y2.y0 + 3y2 mark = \y0.y0 mark# = \y0.2y0 Using this interpretation, the requirements translate to: [[active#(f(a, _x0, _x0))]] = 2 + 3x0 > 2x0 = [[mark#(f(_x0, b, b))]] [[mark#(f(_x0, _x1, _x2))]] = 2x0 + 6x2 >= x0 + 3x2 = [[active#(f(_x0, mark(_x1), _x2))]] [[f(mark(_x0), _x1, _x2)]] = x0 + 3x2 >= x0 + 3x2 = [[f(_x0, _x1, _x2)]] [[f(_x0, mark(_x1), _x2)]] = x0 + 3x2 >= x0 + 3x2 = [[f(_x0, _x1, _x2)]] [[f(_x0, _x1, mark(_x2))]] = x0 + 3x2 >= x0 + 3x2 = [[f(_x0, _x1, _x2)]] [[f(active(_x0), _x1, _x2)]] = 3x0 + 3x2 >= x0 + 3x2 = [[f(_x0, _x1, _x2)]] [[f(_x0, active(_x1), _x2)]] = x0 + 3x2 >= x0 + 3x2 = [[f(_x0, _x1, _x2)]] [[f(_x0, _x1, active(_x2))]] = x0 + 9x2 >= x0 + 3x2 = [[f(_x0, _x1, _x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_5, R_0, minimal, all) by (P_6, R_0, minimal, all), where P_6 consists of: mark#(f(X, Y, Z)) =#> active#(f(X, mark(Y), Z)) Thus, the original system is terminating if (P_6, R_0, minimal, all) is finite. We consider the dependency pair problem (P_6, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.