/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRS Reverse [EQUIVALENT, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 11 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 31 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 1 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 2 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) MRRProof [EQUIVALENT, 38 ms] (21) QDP (22) QDPOrderProof [EQUIVALENT, 0 ms] (23) QDP (24) DependencyGraphProof [EQUIVALENT, 0 ms] (25) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. ---------------------------------------- (1) QTRS Reverse (EQUIVALENT) We applied the QTRS Reverse Processor [REVERSE]. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) h(X) -> n__d(c(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(d(x_1)) = x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = x_1 POL(h(x_1)) = 1 + x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = x_1 POL(n__g(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: h(X) -> n__d(c(X)) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(X)) -> N__F(n__g(n__f(c(X)))) F(f(X)) -> N__G(n__f(c(X))) F(f(X)) -> N__F(c(X)) F(f(X)) -> C(X) C(X) -> ACTIVATE(d(X)) C(X) -> D(X) F(X) -> N__F(X) G(X) -> N__G(X) D(X) -> N__D(X) N__F(activate(X)) -> ACTIVATE(f(X)) N__F(activate(X)) -> F(X) N__G(activate(X)) -> G(X) N__D(activate(X)) -> D(X) The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: N__D(activate(X)) -> D(X) D(X) -> N__D(X) The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: N__D(activate(X)) -> D(X) D(X) -> N__D(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *D(X) -> N__D(X) The graph contains the following edges 1 >= 1 *N__D(activate(X)) -> D(X) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: N__G(activate(X)) -> G(X) G(X) -> N__G(X) The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: N__G(activate(X)) -> G(X) G(X) -> N__G(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *G(X) -> N__G(X) The graph contains the following edges 1 >= 1 *N__G(activate(X)) -> G(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: N__F(activate(X)) -> F(X) F(f(X)) -> N__F(n__g(n__f(c(X)))) F(f(X)) -> N__F(c(X)) F(X) -> N__F(X) The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F(f(X)) -> N__F(c(X)) Used ordering: Polynomial interpretation [POLO]: POL(F(x_1)) = x_1 POL(N__F(x_1)) = x_1 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(d(x_1)) = x_1 POL(f(x_1)) = 2 + 2*x_1 POL(g(x_1)) = x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = 2 + 2*x_1 POL(n__g(x_1)) = x_1 ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: N__F(activate(X)) -> F(X) F(f(X)) -> N__F(n__g(n__f(c(X)))) F(X) -> N__F(X) The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. N__F(activate(X)) -> F(X) F(f(X)) -> N__F(n__g(n__f(c(X)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( N__F_1(x_1) ) = max{0, 2x_1 - 1} POL( n__f_1(x_1) ) = max{0, x_1 - 2} POL( n__g_1(x_1) ) = max{0, -2} POL( c_1(x_1) ) = 2 POL( activate_1(x_1) ) = 2x_1 + 1 POL( d_1(x_1) ) = x_1 POL( f_1(x_1) ) = 2 POL( g_1(x_1) ) = 0 POL( n__d_1(x_1) ) = 1 POL( F_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: n__g(activate(X)) -> g(X) g(X) -> n__g(X) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: F(X) -> N__F(X) The TRS R consists of the following rules: f(f(X)) -> n__f(n__g(n__f(c(X)))) c(X) -> activate(d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) n__f(activate(X)) -> activate(f(X)) n__g(activate(X)) -> g(X) n__d(activate(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (25) TRUE