/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. activate : [o] --> o c : [o] --> o d : [o] --> o f : [o] --> o g : [o] --> o h : [o] --> o n!6220!6220d : [o] --> o n!6220!6220f : [o] --> o n!6220!6220g : [o] --> o f(f(X)) => c(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c(X) => d(activate(X)) h(X) => c(n!6220!6220d(X)) f(X) => n!6220!6220f(X) g(X) => n!6220!6220g(X) d(X) => n!6220!6220d(X) activate(n!6220!6220f(X)) => f(activate(X)) activate(n!6220!6220g(X)) => g(X) activate(n!6220!6220d(X)) => d(X) activate(X) => X We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(f(X)) >? c(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c(X) >? d(activate(X)) h(X) >? c(n!6220!6220d(X)) f(X) >? n!6220!6220f(X) g(X) >? n!6220!6220g(X) d(X) >? n!6220!6220d(X) activate(n!6220!6220f(X)) >? f(activate(X)) activate(n!6220!6220g(X)) >? g(X) activate(n!6220!6220d(X)) >? d(X) activate(X) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.y0 c = \y0.y0 d = \y0.y0 f = \y0.y0 g = \y0.y0 h = \y0.3 + 3y0 n!6220!6220d = \y0.y0 n!6220!6220f = \y0.y0 n!6220!6220g = \y0.y0 Using this interpretation, the requirements translate to: [[f(f(_x0))]] = x0 >= x0 = [[c(n!6220!6220f(n!6220!6220g(n!6220!6220f(_x0))))]] [[c(_x0)]] = x0 >= x0 = [[d(activate(_x0))]] [[h(_x0)]] = 3 + 3x0 > x0 = [[c(n!6220!6220d(_x0))]] [[f(_x0)]] = x0 >= x0 = [[n!6220!6220f(_x0)]] [[g(_x0)]] = x0 >= x0 = [[n!6220!6220g(_x0)]] [[d(_x0)]] = x0 >= x0 = [[n!6220!6220d(_x0)]] [[activate(n!6220!6220f(_x0))]] = x0 >= x0 = [[f(activate(_x0))]] [[activate(n!6220!6220g(_x0))]] = x0 >= x0 = [[g(_x0)]] [[activate(n!6220!6220d(_x0))]] = x0 >= x0 = [[d(_x0)]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] We can thus remove the following rules: h(X) => c(n!6220!6220d(X)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] f#(f(X)) =#> c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) 1] c#(X) =#> d#(activate(X)) 2] c#(X) =#> activate#(X) 3] activate#(n!6220!6220f(X)) =#> f#(activate(X)) 4] activate#(n!6220!6220f(X)) =#> activate#(X) 5] activate#(n!6220!6220g(X)) =#> g#(X) 6] activate#(n!6220!6220d(X)) =#> d#(X) Rules R_0: f(f(X)) => c(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c(X) => d(activate(X)) f(X) => n!6220!6220f(X) g(X) => n!6220!6220g(X) d(X) => n!6220!6220d(X) activate(n!6220!6220f(X)) => f(activate(X)) activate(n!6220!6220g(X)) => g(X) activate(n!6220!6220d(X)) => d(X) activate(X) => X Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1, 2 * 1 : * 2 : 3, 4, 5, 6 * 3 : 0 * 4 : 3, 4, 5, 6 * 5 : * 6 : This graph has the following strongly connected components: P_1: f#(f(X)) =#> c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c#(X) =#> activate#(X) activate#(n!6220!6220f(X)) =#> f#(activate(X)) activate#(n!6220!6220f(X)) =#> activate#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= f(X) => n!6220!6220f(X) activate(n!6220!6220f(X)) => f(activate(X)) activate(X) => X By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: f#(f(X)) >? c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c#(X) >? activate#(X) activate#(n!6220!6220f(X)) >? f#(activate(X)) activate#(n!6220!6220f(X)) >? activate#(X) f(X) >= n!6220!6220f(X) activate(n!6220!6220f(X)) >= f(activate(X)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.y0 activate# = \y0.y0 c# = \y0.y0 f = \y0.1 + 2y0 f# = \y0.1 n!6220!6220f = \y0.1 + 2y0 n!6220!6220g = \y0.0 Using this interpretation, the requirements translate to: [[f#(f(_x0))]] = 1 >= 1 = [[c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(_x0))))]] [[c#(_x0)]] = x0 >= x0 = [[activate#(_x0)]] [[activate#(n!6220!6220f(_x0))]] = 1 + 2x0 >= 1 = [[f#(activate(_x0))]] [[activate#(n!6220!6220f(_x0))]] = 1 + 2x0 > x0 = [[activate#(_x0)]] [[f(_x0)]] = 1 + 2x0 >= 1 + 2x0 = [[n!6220!6220f(_x0)]] [[activate(n!6220!6220f(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[f(activate(_x0))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: f#(f(X)) =#> c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c#(X) =#> activate#(X) activate#(n!6220!6220f(X)) =#> f#(activate(X)) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: f#(f(X)) >? c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(X)))) c#(X) >? activate#(X) activate#(n!6220!6220f(X)) >? f#(activate(X)) f(X) >= n!6220!6220f(X) activate(n!6220!6220f(X)) >= f(activate(X)) activate(X) >= X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: activate = \y0.y0 activate# = \y0.3 + y0 c# = \y0.3 + 2y0 f = \y0.1 + 3y0 f# = \y0.3 + 3y0 n!6220!6220f = \y0.1 + 3y0 n!6220!6220g = \y0.0 Using this interpretation, the requirements translate to: [[f#(f(_x0))]] = 6 + 9x0 > 5 = [[c#(n!6220!6220f(n!6220!6220g(n!6220!6220f(_x0))))]] [[c#(_x0)]] = 3 + 2x0 >= 3 + x0 = [[activate#(_x0)]] [[activate#(n!6220!6220f(_x0))]] = 4 + 3x0 > 3 + 3x0 = [[f#(activate(_x0))]] [[f(_x0)]] = 1 + 3x0 >= 1 + 3x0 = [[n!6220!6220f(_x0)]] [[activate(n!6220!6220f(_x0))]] = 1 + 3x0 >= 1 + 3x0 = [[f(activate(_x0))]] [[activate(_x0)]] = x0 >= x0 = [[_x0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_1, minimal, formative) by (P_3, R_1, minimal, formative), where P_3 consists of: c#(X) =#> activate#(X) Thus, the original system is terminating if (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.