/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 72 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 17 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 0 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) MRRProof [EQUIVALENT, 15 ms] (12) QDP (13) QDPOrderProof [EQUIVALENT, 42 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) DependencyGraphProof [EQUIVALENT, 0 ms] (22) QDP (23) TransformationProof [EQUIVALENT, 0 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) QDPOrderProof [EQUIVALENT, 30 ms] (28) QDP (29) QDPOrderProof [EQUIVALENT, 398 ms] (30) QDP (31) NonTerminationLoopProof [COMPLETE, 33 ms] (32) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(nil) -> nil adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) nats -> adx(zeros) zeros -> cons(0, n__zeros) head(cons(X, L)) -> X tail(cons(X, L)) -> activate(L) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(activate(x_1)) = x_1 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 2*x_1 POL(incr(x_1)) = x_1 POL(n__adx(x_1)) = x_1 POL(n__incr(x_1)) = x_1 POL(n__zeros) = 0 POL(nats) = 2 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2 + 2*x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: nats -> adx(zeros) tail(cons(X, L)) -> activate(L) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(nil) -> nil adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) head(cons(X, L)) -> X incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(activate(x_1)) = x_1 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 1 + 2*x_1 POL(incr(x_1)) = x_1 POL(n__adx(x_1)) = x_1 POL(n__incr(x_1)) = x_1 POL(n__zeros) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: head(cons(X, L)) -> X ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(nil) -> nil adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(activate(x_1)) = x_1 POL(adx(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = x_1 POL(n__adx(x_1)) = 1 + x_1 POL(n__incr(x_1)) = x_1 POL(n__zeros) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: adx(nil) -> nil ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ADX(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(X)) -> INCR(activate(X)) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ACTIVATE(n__adx(X)) -> ACTIVATE(X) ACTIVATE(n__zeros) -> ZEROS The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ADX(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__adx(X)) -> ACTIVATE(X) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: ADX(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__adx(X)) -> ACTIVATE(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ADX(x_1)) = 1 + 2*x_1 POL(INCR(x_1)) = x_1 POL(activate(x_1)) = x_1 POL(adx(x_1)) = 1 + 2*x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(incr(x_1)) = x_1 POL(n__adx(x_1)) = 1 + 2*x_1 POL(n__incr(x_1)) = x_1 POL(n__zeros) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(zeros) = 0 ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(X)) -> ACTIVATE(X) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__incr(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ADX_1(x_1) ) = 2 POL( INCR_1(x_1) ) = 2x_1 + 2 POL( activate_1(x_1) ) = x_1 POL( n__incr_1(x_1) ) = x_1 + 1 POL( incr_1(x_1) ) = x_1 + 1 POL( n__adx_1(x_1) ) = 1 POL( adx_1(x_1) ) = 1 POL( n__zeros ) = 1 POL( zeros ) = 1 POL( nil ) = 0 POL( cons_2(x_1, x_2) ) = max{0, x_2 - 1} POL( s_1(x_1) ) = x_1 + 2 POL( 0 ) = 2 POL( ACTIVATE_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X adx(X) -> n__adx(X) incr(nil) -> nil incr(X) -> n__incr(X) incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) zeros -> n__zeros ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(X)) -> INCR(activate(X)) INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__incr(X)) -> INCR(activate(X)) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))),ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0)))) (ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))),ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0)))) (ACTIVATE(n__incr(n__zeros)) -> INCR(zeros),ACTIVATE(n__incr(n__zeros)) -> INCR(zeros)) (ACTIVATE(n__incr(x0)) -> INCR(x0),ACTIVATE(n__incr(x0)) -> INCR(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__adx(X)) -> ADX(activate(X)) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) ACTIVATE(n__incr(x0)) -> INCR(x0) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__adx(X)) -> ADX(activate(X)) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))),ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0)))) (ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))),ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0)))) (ACTIVATE(n__adx(n__zeros)) -> ADX(zeros),ACTIVATE(n__adx(n__zeros)) -> ADX(zeros)) (ACTIVATE(n__adx(x0)) -> ADX(x0),ACTIVATE(n__adx(x0)) -> ADX(x0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(x0)) -> ADX(x0) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__incr(n__zeros)) -> INCR(zeros) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros)),ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros))) (ACTIVATE(n__incr(n__zeros)) -> INCR(n__zeros),ACTIVATE(n__incr(n__zeros)) -> INCR(n__zeros)) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros)) ACTIVATE(n__incr(n__zeros)) -> INCR(n__zeros) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros)) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ACTIVATE(n__adx(n__zeros)) -> ADX(zeros) at position [0] we obtained the following new rules [LPAR04]: (ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)),ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros))) (ACTIVATE(n__adx(n__zeros)) -> ADX(n__zeros),ACTIVATE(n__adx(n__zeros)) -> ADX(n__zeros)) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(n__zeros) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros)) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__incr(n__zeros)) -> INCR(cons(0, n__zeros)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ADX_1(x_1) ) = max{0, -2} POL( INCR_1(x_1) ) = x_1 POL( activate_1(x_1) ) = x_1 POL( n__incr_1(x_1) ) = 2x_1 POL( incr_1(x_1) ) = 2x_1 POL( n__adx_1(x_1) ) = max{0, -2} POL( adx_1(x_1) ) = 0 POL( cons_2(x_1, x_2) ) = x_2 POL( n__zeros ) = 2 POL( zeros ) = 2 POL( nil ) = 1 POL( s_1(x_1) ) = x_1 + 2 POL( 0 ) = 2 POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) incr(X) -> n__incr(X) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) adx(X) -> n__adx(X) zeros -> cons(0, n__zeros) zeros -> n__zeros ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__adx(n__adx(x0))) -> ADX(adx(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ADX(x_1)) = [1/2] + [1/4]x_1 POL(INCR(x_1)) = [1/4]x_1 POL(activate(x_1)) = x_1 POL(adx(x_1)) = [1/2] + x_1 POL(cons(x_1, x_2)) = [4]x_2 POL(incr(x_1)) = [1/4]x_1 POL(n__adx(x_1)) = [1/2] + x_1 POL(n__incr(x_1)) = [1/4]x_1 POL(n__zeros) = 0 POL(nil) = 0 POL(s(x_1)) = 0 POL(zeros) = 0 The value of delta used in the strict ordering is 3/8. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) incr(X) -> n__incr(X) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) adx(X) -> n__adx(X) zeros -> cons(0, n__zeros) zeros -> n__zeros ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: INCR(cons(X, L)) -> ACTIVATE(L) ACTIVATE(n__incr(n__incr(x0))) -> INCR(incr(activate(x0))) ACTIVATE(n__incr(n__adx(x0))) -> INCR(adx(activate(x0))) ACTIVATE(n__incr(x0)) -> INCR(x0) ACTIVATE(n__adx(n__incr(x0))) -> ADX(incr(activate(x0))) ADX(cons(X, L)) -> INCR(cons(X, n__adx(activate(L)))) ACTIVATE(n__adx(x0)) -> ADX(x0) ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)) The TRS R consists of the following rules: incr(nil) -> nil incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) zeros -> cons(0, n__zeros) incr(X) -> n__incr(X) adx(X) -> n__adx(X) zeros -> n__zeros activate(n__incr(X)) -> incr(activate(X)) activate(n__adx(X)) -> adx(activate(X)) activate(n__zeros) -> zeros activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = ACTIVATE(n__adx(activate(n__zeros))) evaluates to t =ACTIVATE(n__adx(activate(n__zeros))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence ACTIVATE(n__adx(activate(n__zeros))) -> ACTIVATE(n__adx(n__zeros)) with rule activate(X) -> X at position [0,0] and matcher [X / n__zeros] ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)) with rule ACTIVATE(n__adx(n__zeros)) -> ADX(cons(0, n__zeros)) at position [] and matcher [ ] ADX(cons(0, n__zeros)) -> INCR(cons(0, n__adx(activate(n__zeros)))) with rule ADX(cons(X', L')) -> INCR(cons(X', n__adx(activate(L')))) at position [] and matcher [X' / 0, L' / n__zeros] INCR(cons(0, n__adx(activate(n__zeros)))) -> ACTIVATE(n__adx(activate(n__zeros))) with rule INCR(cons(X, L)) -> ACTIVATE(L) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (32) NO