/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR X X1 X2 Y Z) (RULES activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__s(X)) -> S(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(s(X),Y) -> S(n__add(activate(X),activate(Y))) ADD(0,X) -> ACTIVATE(X) AND(true,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) IF(false,X,Y) -> ACTIVATE(Y) IF(true,X,Y) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__s(X)) -> S(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(s(X),Y) -> S(n__add(activate(X),activate(Y))) ADD(0,X) -> ACTIVATE(X) AND(true,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) IF(false,X,Y) -> ACTIVATE(Y) IF(true,X,Y) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(0,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(0,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) -> Usable rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X1 + 2.X2 + 2 [first](X1,X2) = X1 + 2.X2 + 1 [from](X) = X + 2 [s](X) = X + 1 [0] = 1 [cons](X1,X2) = 1/2.X1 + 1/2.X2 + 1/2 [n__add](X1,X2) = 2.X1 + 2.X2 + 2 [n__first](X1,X2) = X1 + 2.X2 + 1 [n__from](X) = X + 2 [n__s](X) = X + 1 [nil] = 1/2 [ACTIVATE](X) = X [ADD](X1,X2) = X1 + X2 + 1/2 [FIRST](X1,X2) = X1 + 2.X2 + 1 [FROM](X) = X + 2 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(0,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(0,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__add(X1,X2)) -> ADD(activate(X1),X2) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(0,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) -> Usable rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X1 + 2.X2 + 2 [first](X1,X2) = 2.X1 + 2.X2 + 1 [from](X) = X + 2 [s](X) = 1/2.X + 2 [0] = 0 [cons](X1,X2) = 1/2.X1 + 1/2.X2 [n__add](X1,X2) = 2.X1 + 2.X2 + 2 [n__first](X1,X2) = 2.X1 + 2.X2 + 1 [n__from](X) = X + 2 [n__s](X) = 1/2.X + 2 [nil] = 0 [ACTIVATE](X) = 1/2.X + 1/2 [ADD](X1,X2) = X1 + X2 + 1/2 [FIRST](X1,X2) = X1 + X2 + 1 [FROM](X) = 1/2.X + 1 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X),Y) -> ACTIVATE(X) ADD(s(X),Y) -> ACTIVATE(Y) ADD(0,X) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) -> Usable rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = X1 + 2.X2 + 1/2 [first](X1,X2) = X1 + 2.X2 + 2 [from](X) = X + 2 [s](X) = X + 2 [0] = 1/2 [cons](X1,X2) = 1/2.X1 + 1/2.X2 [n__add](X1,X2) = X1 + 2.X2 + 1/2 [n__first](X1,X2) = X1 + 2.X2 + 2 [n__from](X) = X + 2 [n__s](X) = X + 2 [nil] = 0 [ACTIVATE](X) = 1/2.X + 2 [FIRST](X1,X2) = 1/2.X1 + X2 + 2 [FROM](X) = 1/2.X + 2 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) -> Usable rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 1/2.X1 + X2 + 1 [first](X1,X2) = 2.X1 + 2.X2 + 1/2 [from](X) = 2.X + 2 [s](X) = 1/2.X [0] = 2 [cons](X1,X2) = X1 + 1/2.X2 [n__add](X1,X2) = 1/2.X1 + X2 + 1 [n__first](X1,X2) = 2.X1 + 2.X2 + 1/2 [n__from](X) = 2.X + 2 [n__s](X) = 1/2.X [nil] = 0 [ACTIVATE](X) = 1/2.X [FIRST](X1,X2) = X1 + X2 [FROM](X) = X + 1 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) -> Usable rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X2 + 1/2 [first](X1,X2) = X1 + 2.X2 + 1 [from](X) = 2.X [s](X) = X [0] = 1 [cons](X1,X2) = 1/2.X1 + 1/2.X2 [n__add](X1,X2) = 2.X2 + 1/2 [n__first](X1,X2) = X1 + 2.X2 + 1 [n__from](X) = 2.X [n__s](X) = X [nil] = 1 [ACTIVATE](X) = X [FIRST](X1,X2) = X1 + 2.X2 [FROM](X) = X Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__from(X)) -> FROM(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(X) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Y) FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> ACTIVATE(X) ->->-> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) Problem 1: Subterm Processor: -> Pairs: ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Projection: pi(ACTIVATE) = 1 pi(FROM) = 1 Problem 1: SCC Processor: -> Pairs: FROM(X) -> ACTIVATE(X) -> Rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(0,X) -> activate(X) add(X1,X2) -> n__add(X1,X2) and(false,Y) -> false and(true,X) -> activate(X) first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(0,X) -> nil first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) if(false,X,Y) -> activate(Y) if(true,X,Y) -> activate(X) s(X) -> n__s(X) ->Strongly Connected Components: There is no strongly connected component The problem is finite.