/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR N X X1 X2 Y Z) (RULES 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ) Problem 1: Dependency Pairs Processor: -> Pairs: 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> 2NDSPOS(N,activate(Z)) 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Z) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> 2NDSNEG(N,activate(Z)) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Z) ACTIVATE(n__cons(X1,X2)) -> CONS(X1,X2) ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> CONS(X,n__from(s(X))) PI(X) -> 2NDSPOS(X,from(0)) PI(X) -> FROM(0) PLUS(s(X),Y) -> PLUS(X,Y) SQUARE(X) -> TIMES(X,X) TIMES(s(X),Y) -> PLUS(Y,times(X,Y)) TIMES(s(X),Y) -> TIMES(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) Problem 1: SCC Processor: -> Pairs: 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> 2NDSPOS(N,activate(Z)) 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Z) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> 2NDSNEG(N,activate(Z)) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Z) ACTIVATE(n__cons(X1,X2)) -> CONS(X1,X2) ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> CONS(X,n__from(s(X))) PI(X) -> 2NDSPOS(X,from(0)) PI(X) -> FROM(0) PLUS(s(X),Y) -> PLUS(X,Y) SQUARE(X) -> TIMES(X,X) TIMES(s(X),Y) -> PLUS(Y,times(X,Y)) TIMES(s(X),Y) -> TIMES(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: PLUS(s(X),Y) -> PLUS(X,Y) ->->-> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->->Cycle: ->->-> Pairs: TIMES(s(X),Y) -> TIMES(X,Y) ->->-> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->->Cycle: ->->-> Pairs: 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> 2NDSPOS(N,activate(Z)) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> 2NDSNEG(N,activate(Z)) ->->-> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: PLUS(s(X),Y) -> PLUS(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Projection: pi(PLUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: TIMES(s(X),Y) -> TIMES(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Projection: pi(TIMES) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: 2NDSNEG(s(N),cons(X,n__cons(Y,Z))) -> 2NDSPOS(N,activate(Z)) 2NDSPOS(s(N),cons(X,n__cons(Y,Z))) -> 2NDSNEG(N,activate(Z)) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Projection: pi(2NDSNEG) = 1 pi(2NDSPOS) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.