/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 113 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 33 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 0 ms] (6) QTRS (7) QTRSRRRProof [EQUIVALENT, 14 ms] (8) QTRS (9) DependencyPairsProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) MRRProof [EQUIVALENT, 0 ms] (14) QDP (15) MRRProof [EQUIVALENT, 18 ms] (16) QDP (17) MRRProof [EQUIVALENT, 19 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPOrderProof [EQUIVALENT, 30 ms] (22) QDP (23) PisEmptyProof [EQUIVALENT, 0 ms] (24) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__adx(x_1)) = x_1 POL(a__head(x_1)) = 2*x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 1 POL(a__tail(x_1)) = 2*x_1 POL(a__zeros) = 0 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 2*x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 1 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__nats -> a__adx(a__zeros) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__adx(x_1)) = x_1 POL(a__head(x_1)) = 1 + 2*x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 0 POL(a__tail(x_1)) = 2*x_1 POL(a__zeros) = 0 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(head(x_1)) = 1 + 2*x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__head(cons(X, L)) -> mark(X) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__adx(x_1)) = 1 + x_1 POL(a__head(x_1)) = 2*x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 0 POL(a__tail(x_1)) = x_1 POL(a__zeros) = 0 POL(adx(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 2*x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__adx(nil) -> nil ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. ---------------------------------------- (7) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__adx(x_1)) = x_1 POL(a__head(x_1)) = x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 0 POL(a__tail(x_1)) = 1 + 2*x_1 POL(a__zeros) = 0 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(head(x_1)) = x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 1 + 2*x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__tail(cons(X, L)) -> mark(L) ---------------------------------------- (8) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. ---------------------------------------- (9) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, L)) -> MARK(X) A__ADX(cons(X, L)) -> A__INCR(cons(mark(X), adx(L))) A__ADX(cons(X, L)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(adx(X)) -> A__ADX(mark(X)) MARK(adx(X)) -> MARK(X) MARK(nats) -> A__NATS MARK(zeros) -> A__ZEROS MARK(head(X)) -> A__HEAD(mark(X)) MARK(head(X)) -> MARK(X) MARK(tail(X)) -> A__TAIL(mark(X)) MARK(tail(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, L)) -> MARK(X) MARK(incr(X)) -> MARK(X) MARK(adx(X)) -> A__ADX(mark(X)) A__ADX(cons(X, L)) -> A__INCR(cons(mark(X), adx(L))) A__ADX(cons(X, L)) -> MARK(X) MARK(adx(X)) -> MARK(X) MARK(head(X)) -> MARK(X) MARK(tail(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(tail(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__ADX(x_1)) = x_1 POL(A__INCR(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(a__adx(x_1)) = x_1 POL(a__head(x_1)) = x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 0 POL(a__tail(x_1)) = 1 + 2*x_1 POL(a__zeros) = 0 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(head(x_1)) = x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 1 + 2*x_1 POL(zeros) = 0 ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, L)) -> MARK(X) MARK(incr(X)) -> MARK(X) MARK(adx(X)) -> A__ADX(mark(X)) A__ADX(cons(X, L)) -> A__INCR(cons(mark(X), adx(L))) A__ADX(cons(X, L)) -> MARK(X) MARK(adx(X)) -> MARK(X) MARK(head(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(head(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__ADX(x_1)) = 2*x_1 POL(A__INCR(x_1)) = 2*x_1 POL(MARK(x_1)) = 2*x_1 POL(a__adx(x_1)) = x_1 POL(a__head(x_1)) = 1 + x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 0 POL(a__tail(x_1)) = x_1 POL(a__zeros) = 0 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(head(x_1)) = 1 + x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = x_1 POL(zeros) = 0 ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, L)) -> MARK(X) MARK(incr(X)) -> MARK(X) MARK(adx(X)) -> A__ADX(mark(X)) A__ADX(cons(X, L)) -> A__INCR(cons(mark(X), adx(L))) A__ADX(cons(X, L)) -> MARK(X) MARK(adx(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: MARK(adx(X)) -> A__ADX(mark(X)) A__ADX(cons(X, L)) -> MARK(X) MARK(adx(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A__ADX(x_1)) = 1 + 2*x_1 POL(A__INCR(x_1)) = x_1 POL(MARK(x_1)) = 2*x_1 POL(a__adx(x_1)) = 1 + x_1 POL(a__head(x_1)) = x_1 POL(a__incr(x_1)) = x_1 POL(a__nats) = 0 POL(a__tail(x_1)) = 2*x_1 POL(a__zeros) = 0 POL(adx(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = 2*x_1 + x_2 POL(head(x_1)) = x_1 POL(incr(x_1)) = x_1 POL(mark(x_1)) = x_1 POL(nats) = 0 POL(nil) = 0 POL(s(x_1)) = x_1 POL(tail(x_1)) = 2*x_1 POL(zeros) = 0 ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(incr(X)) -> A__INCR(mark(X)) A__INCR(cons(X, L)) -> MARK(X) MARK(incr(X)) -> MARK(X) A__ADX(cons(X, L)) -> A__INCR(cons(mark(X), adx(L))) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: A__INCR(cons(X, L)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__INCR(cons(X, L)) -> MARK(X) MARK(incr(X)) -> A__INCR(mark(X)) MARK(incr(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__INCR_1(x_1) ) = 2x_1 + 1 POL( mark_1(x_1) ) = x_1 POL( incr_1(x_1) ) = 2x_1 + 2 POL( a__incr_1(x_1) ) = 2x_1 + 2 POL( adx_1(x_1) ) = 2x_1 + 2 POL( a__adx_1(x_1) ) = 2x_1 + 2 POL( nats ) = 2 POL( a__nats ) = 2 POL( zeros ) = 1 POL( a__zeros ) = 1 POL( head_1(x_1) ) = 0 POL( a__head_1(x_1) ) = max{0, -2} POL( tail_1(x_1) ) = 0 POL( a__tail_1(x_1) ) = 0 POL( nil ) = 0 POL( cons_2(x_1, x_2) ) = x_1 + 1 POL( s_1(x_1) ) = 2x_1 + 1 POL( 0 ) = 0 POL( MARK_1(x_1) ) = x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__adx(X) -> adx(X) a__incr(nil) -> nil a__incr(X) -> incr(X) a__head(X) -> head(X) a__tail(X) -> tail(X) a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) a__zeros -> zeros a__nats -> nats ---------------------------------------- (22) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__zeros -> cons(0, zeros) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (24) YES